

С.Е. Новикова, О.В. Тихонова, Л.К. Курбатов, И.В. Вахрушев, В.Г. Згода

ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»; Россия, 119121, Москва, ул. Погодинская, 10, стр. 8

Контактные данные: Светлана Евгеньевна Новикова novikova.s.e3101@gmail.com

Дифференцирующая терапия с использованием полностью транс-ретиноевой кислоты (ATRA) с успехом применяется для лечения острого промиелоцитарного лейкоза (ОПЛ). В то же время развитие резистентности и синдрома дифференцировки в качестве побочного эффекта является основанием для более глубокого исследования молекулярной основы дифференцирующей терапии и поиска альтернативных подходов к лечению. Используя обработанные ATRA-клетки линии HL-60 в качестве модельного объекта, мы определили 76 активируемых и 101 ингибируемый белок с помощью масс-спектрометрического профилирования без использования стабильных изотопных меток. Применив биоинформатический подход, мы получили модельные схемы регуляции ингибируемых и активируемых белков, ключевыми молекулами которых оказались деацетилаза гистонов 1 (HDAC1) и транскрипционный корепрессор RNF96 соответственно. Обе предсказанные ключевые молекулы были зарегистрированы в клетках линии HL-60 на уровне белка наряду с молекулами Cdk2, DNA-PKcs, Ubc9 и HMGIY в модельной схеме, регулирующей активируемый кластер белков, и протеинкиназой р38 альфа, вовлеченной в схему регуляции ингибируемых белков. Целевое фармакологическое воздействие на эти молекулы может иметь антипролиферативный эффект и представлять альтернативный терапевтический подход для борьбы с ОПЛ.

Ключевые слова: ATRA, клетки линии HL-60, гранулоцитарная дифференцировка, масс-спектрометрия, поиск ключевых регуляторов, транскрипционные факторы

DOI: 10.17650/2311-1267-2018-5-3-43-55

Model regulatory networks for proteins that are activated and inhibited in the process of induced granulocyte differentiation

S.E. Novikova, O.V. Tikhonova, L.K. Kurbatov, I.V. Vakhrushev, V.G. Zgoda

V.N. Orekhovich Research Institute of Biomedical Chemistry; 10, Bldg. 8 Pogodinskaya St., Moscow, 119121, Russia

Differentiation therapy with all trans retinoic acid (ATRA) is successfully used for the treatment of acute promyelocytic leukemia (APL). At the same time, the development of the resistance and the differentiation syndrome as a side effect is a reason to explore and examine in greater depth the molecular basis of the differentiation therapy and to search the alternative paradigm of the treatment. By the use of ATRA-treated HL-60 cell line as a model object, we have estimated 76 activated and 101 inhibited proteins by the label-free mass-spectrometric profiling. By applying the bioinformatic approach we have obtained model schemes of regulation of the inhibited and activated proteins whose key molecules turn out to be the histone deacetylase 1 (HDAC1) and the transcriptional corepressor (RNF96) respectively. Both of predicted key molecules have been detected in HL-60 cell line at the proteome level in conjunction with Cdk2, DNA-PKcs, Ubc9 and HMGIY molecules in the model scheme regulating the activated protein cluster and the protein kinase p38 alpha involved in the regulating scheme of the inhibited proteins. The pharmacological targeting of these molecules may have an anti-proliferative effect and provide the alternative approach to APL treatment.

Key words: ATRA, HL-60 cells, granulocyte differentiation, mass spectrometry, key regulators search, transcription factors

Введение

Полностью транс-ретиноевая кислота (ATRA) индуцирует дифференцировку промиелоцитарных клеток в функциональные гранулоциты, что лежит в основе терапии острого промиелоцитарного лейкоза (ОПЛ). Одной из основных проблем дифференцирующей терапии является развитие резистентности к пре-

паратам ATRA и возникновение опасного для жизни осложнения — синдрома дифференцировки. В связи с этим разработка альтернативных ATRA-препаратов является актуальной задачей. В то же время поиск потенциальных мишеней, воздействуя на которые можно было бы достигать противоопухолевого эффекта, является трудоемким и дорогостоящим процессом.

Р_{Журнал} ДЕТСКОЙ ГЕМАТОЛОГИИ и ОНКОЛОГИИ

Омиксные технологии, позволяющие анализировать молекулярный состав биологических объектов с высокой производительностью, являются привлекательными для пилотной стадии поиска биомаркеров и выявления потенциальных терапевтических мишеней [1, 2]. Масс-спектрометрический метод за счет высокого разрешения, чувствительности и точности измерений обеспечивает ревизию белкового состава биологических образцов, в том числе и очень сложных по составу, таких как лизаты клеток или плазма крови [3, 4]. Кроме того, количественное профилирование с использованием масс-спектрометрии позволяет выявить белки, изменение содержания которых отражает биологический ответ на действие фармакологических препаратов, в том числе ATRA [5].

Поскольку большая часть фармакологических веществ активирует или ингибирует молекулы-мишени в клетке, целью данного исследования было выделить кластеры белков, экспрессия которых снижается или повышается в процессе ATRA-индуцированной дифференцировки клеток линии HL-60, и с помощью биоинформатических методов найти для активируемых и ингибируемых дифференциально экспрессирующихся белков регуляторы, которые можно рассматривать в качестве потенциальных терапевтических мишеней.

Клеточная линия HL-60 многие десятилетия используется в качестве модели для исследования молекулярной природы ATRA-индуцированной гранулоцитарной дифференцировки, начиная со времени открытия самого феномена, когда данную линию клеток еще относили к ОПЛ (M3 по классификации FAB) [6]. Стоит отметить, что и после пересмотра классификации клеток линии HL-60 с присвоением типа M2 по классификации FAB (острый миелобластный лейкоз с признаками созревания) [7] данную клеточную модель продолжают использовать для исследования ATRA-индуцированной гранулоцитарной дифференцировки, и в том числе феномена резистентности к ATRA [8, 9].

В данном исследовании мы применили масс-спектрометрическое профилирование с последующим относительным количественным анализом без использования стабильных изотопных меток и поиск ключевых регуляторов в программном обеспечении geneXplain platform для образцов клеток линии HL-60, полученных через 0, 3, 24, 48 и 96 ч после обработки ATRA. Поскольку детекция предсказанных молекул в биологическом объекте на уровне белка отражает адекватность моделирования и служит простейшим способом валидации полученных модельных схем, результаты моделирования были сопоставлены с дополнительными данными масс-спектрометрического анализа цитозольной и ядерной фракции клеток линии HL-60.

Материалы и методы Культуры клеток

Культура клеток линии HL-60 была получена из криобанка Научно-исследовательского института биомедицинской химии им. В.Н. Ореховича. После размораживания клетки культивировали в ростовой среде (RPMI-1640 с добавлением 10 % фетальной сыворотки крупного рогатого скота, содержащей 100 ед/мл пенициллина, 100 ед/мл стрептомицина и 2 мМ L-глутамина (все реактивы – Gibco), в CO₂-ин-кубаторе в стандартных условиях (37 °C, 5 % CO₂, 80 % влажности). При достижении концентрации 1 млн кл/мл культуры рассеивали в соотношении 1:3. Подсчет клеток осуществляли в камере Горяева.

2018

Для индукции дифференцировки клетки HL-60 в ростовой среде помещали в культуральные флаконы с площадью дна 75 см² (концентрация клеток – 10 млн кл/мл, 10 мл среды). Затем во флаконы вносили по 5 мл ростовой среды, содержащей ATRA в концентрации 150 μ M/л (конечная концентрация – 50 μ M/л). После этого клетки помещали в СО2-инкубатор и инкубировали в стандартных условиях в течение 3, 24, 48 либо 96 ч. По окончании клетки трижды отмывали путем центрифугирования с последующим ресуспендированием в 10 мл 0,1 М фосфатно-солевого буфера, после чего замораживали пробирки с осадком в жидком азоте. В качестве контроля, соответствовавшего нулевому сроку инкубации, были использованы клетки, культивированные обычным образом (без добавления ATRA). Эффективность прохождения дифференцировки оценивали по экспрессии поверхностных маркеров CD11b и CD38 методом проточной цитофлуориметрии.

Получение цельного лизата, ядерной и цитозольной фракции клеток HL-60 и пробоподготовка к масс-спектрометрическому анализу

Для протеомного профилирования клетки HL-60, собранные во временных точках 0, 3, 24, 48 и 96 ч после добавления ATRA в 3 биологических повторах, лизировали в буфере, содержащем 3 % дезоксихолат натрия, 100 мМ Tris-HCl, pH = 8,5, таким образом получали цельный лизат. Преимуществом проведенного нами исследования явилось мониторирование молекулярных изменений в различные временные точки (0, 3, 24, 48 и 96 ч), позволяющее рассматривать процесс ATRA-индуцированной дифференцировки в динамике. В качестве контроля использовались клетки линии HL-60 без обработки ATRA (0 h) на основании протоколов индукции гранулоцитарной дифференцировки для последующего протеомного анализа, описанных ранее в литературе [10–12].

Для получения белков ядерной и цитозольной фракции применяли химическую экстракцию [13].

Российский ДЕТСКОЙ ГЕМАТОЛОГИИ и ОНКОЛОГИИ

В полученных образцах цельного клеточного лизата, а также цитозольной и ядерных фракций определяли концентрацию общего белка колориметрическим методом с бицинхониновой кислотой с помощью коммерческого набора Pierce[™] BCA Protein Assay Kit (Pierce) в соответствии с рекомендациями производителя.

Гидролитическое расщепление белков осуществляли согласно протоколу FASP (Filter Aided Sample Preparation) [14]. К каждой пробе добавляли раствор трипсина в соотношении: общая масса фермента/ общая масса белка 1/100 и инкубировали в течение ночи при температуре 37 °С. По окончании добавляли трипсин в соотношении: общая масса фермента/общая масса белка 1/100 и инкубировали 2 ч при температуре 37 °С. Полученные образцы подвергали масс-спектрометрическому анализу.

Хромато-масс-спектрометрический анализ

Хромато-масс-спектрометрический анализ осуществляли для каждой пробы в 5 технических повторах. Пептидную смесь загружали на обогащающую колонку Zorbax 300SB-C18 (диаметр частиц 5 мкм, 5×0.3 мм) (Agilent Technologies) и промывали подвижной фазой С для загрузки и промывки обогащающей колонки, представлявшей собой 5 % раствор ацетонитрила в 0,1 % муравьиной кислоте и 0,05 % трифторуксусной кислоте при скорости потока 3 мкл/мин в течение 5 мин. Пептиды разделяли на аналитической колонке Zorbax 300SB-C18 (диаметр частиц 3,5 мкм, 150 × 75 мкм) (Agilent Technologies) в градиенте подвижной фазы В, представлявшей собой 80 % раствор ацетонитрила в 0,1 % муравьиной кислоты при скорости потока 0,3 мкл/мин. Использовали следующие параметры градиента ацетонитрила: аналитическую колонку промывали подвижной 5 % фазой В в течение 5 мин, после чего линейно увеличивали концентрацию подвижной фазы В до 60 % в течение 80 мин, в течение 5 мин увеличивали концентрацию подвижной фазы В до 100 %, в течение 10 мин промывали аналитическую колонку 100 % подвижной фазой В, в течение 5 мин уменьшали концентрацию подвижной фазы В до 5 %, в течение 15 мин аналитическую колонку уравновешивали 5 % подвижной фазой В.

Масс-спектрометрический анализ проводили на гибридном масс-спектрометре Orbitrap Velos (Thermo Scientific), используя масс-анализатор типа орбитрэп. Максимальное время накопления 10⁶ ионов для получения MC-скана с разрешением 30 000 (для m/z = 400) в диапазоне величин m/z = 300–2000 в режиме положительной ионизации составляло 50 мс. Пять наиболее интенсивных ионов, зарегистрированных в MC-скане, выбирали для последующей фрагментации, если их абсолютная интенсивность превышала 5000 относительных единиц. Использовали HCD-тип фрагментации с нормализованной энергией соударения 35 %. Применяли динамическое исключение из тандемного анализа: длительность исключения составляла 90 с после того, как ион хотя бы 1 раз был фрагментирован с получением MC/MC-спектра в течение 30 с. Размер списка исключения составлял 500 ионов. Максимальное время накопления 5×10^4 ионов для получения MC/MC-скана с разрешением 7500 (при m/z = 400) в диапазоне величин m/z = 300–2000, в режиме положительной ионизации составляло 100 мс.

Идентификация белков и относительный количественный анализ

Для идентификации белков использовали поисковый алгоритм Andromeda, встроенный в программное обеспечение MaxQuant 1.5.5.0 (Max Planck Institute of Biochemistry). В качестве фиксированной модификации аминокислотных остатков использовали карбамидометилирование цистеина, в качестве вариабельной модификации — окисление метионина. Толерантность для родительских и дочерних ионов составляла 20 ppm. Для белков и пептидов пороговое значение частоты встречаемости ложноположительных идентификаций (FDR) составило 0,01.

Количественный анализ осуществлялся на основании площади под пиком родительского иона с использованием вычисленной величины LFQ (Labelfree Quantification Intensity) с помощью встроенного в MaxQuant алгоритма. Статистический анализ выполнялся в программном обеспечении Perseus 1.6.0.7 (Max Planck Institute of Biochemistry). Сравнивались данные масс-спектрометрического анализа для всех экспериментальных точек (0, 3, 24, 48 и 96 ч). Результаты относительной количественной оценки без использования стабильных изотопных меток на основании площади под пиком прекурсорного иона (LFQ intensity) визуализировали в программном обеспечении Perseus. Для определения белков, содержание которых значимо меняется на протяжении ATRA-индуцированной дифференцировки (временные точки - 0, 3, 24, 48 и 96 ч), проводили многофакторный дисперсионный анализ (ANOVA p-value $< 10^{-7}$). Для дифференциально экспрессируемых (FDR $< 10^{-7}$) в течение всего периода дифференцировки белков была построена тепловая карта, отражающая количественные изменения белков.

Построение модельных схем в программном обеспечении geneXplain platform

Входными данными для анализа в программном обеспечении geneXplain platform 4.0 служили тестовые (белки активируемого и ингибируемого кластеров) и контрольные (белки, содержание которых не изме-

Р_{Журнал} ДЕТСКОЙ ГЕМАТОЛОГИИ и ОНКОЛОГИИ

нялось в процессе ATRA-индуцированной дифференцировки) выборки.

Поиск предпредставленных сайтов связывания транскрипционных факторов (ТФ) в промоторных регионах генов, соответствующих белкам тестовой выборки, был осуществлен с использованием модуля "Site search on gene set" и базы данных TRANSFAC[®].

Область поиска в промоторном регионе лежала в диапазоне от +1000 до +100 п. н. от сайта начала транскрипции, при этом для анализа использовались только наиболее подтвержденные промоторы. Суть анализа заключалась в сравнении частоты встречаемости матриц базы TRANSFAC[®], соответствующих участкам связывания ТФ в промоторах генов, кодирующих белки тестовой выборки, по сравнению с генами, кодирующими белки контрольных выборок. При выборе матриц для дальнейшего анализа был установлен порог статистической значимости предпредставленности участков связывания ТФ в тестовой выборке p-value < 0,01. Матрицы были конвертированы в набор ТФ, которые могли быть ответственны за изменения содержания белков, наблюдаемые экспериментально.

Для набора ТФ, полученных на предыдущем этапе, проводили поиск общего регулятора при помощи модуля "Regulator search" платформы geneXplain (http://platform.genexplain.com) со следующими ниже установками: используемая база данных TRANSPATH[®], длина пути R = 10, отсечение результатов по FDR = 0.05. Для каждого возможного регулятора помимо FDR рассчитываются оценки Score, Z-score и Ranks sum. Результаты поиска ключевых молекул сравнивались со списком белков, идентифицированных в ядерной и цитозольной фракции клеток линии HL-60. Ключевую молекулу, экспрессирующуюся в клетках линии HL-60 на уровне белка и демонстрирующую наибольшую статистическую значимость (мнимальная величина для показателя ранговой суммы (rank sum)), использовали для построения модельной схемы.

Результаты

По результатам протеомного профилирования клеток линии HL-60 во временных точках 0, 3, 24, 48 и 96 ч после добавления ATRA были идентифицированы 1713 белков как минимум по 2 протеотипическим пептидам.

Как видно из тепловой диаграммы, представленной на рис. 1, среди дифференциально экспрессирующихся белков можно выделить 2 кластера – кластер 1 и кластер 2 – белки, содержание которых увеличивается и уменьшается к 96 ч после добавления ATRA соответственно. В дальнейшем мы будем называть их активируемый (76 белков, кластер 1) и ингибируемый (101 белок, кластер 2) кластеры. Кластеризация в программном обеспечении Perseus

Рис. 1. Тепловая диаграмма, отражающая разницу в экспрессии белков клеток линии HL-60 в процессе ATRA-индуцированной дифференцировки по результатам протеомного профилирования через 0, 3, 24, 48 и 96 ч после добавления индуктора (показаны 177 белков со статистически значимыми различиями в экспрессии (ANOVA p-value < 10⁻⁷), образующих кластеры 1 и 2)

Fig. 1. The heatmap representing the expression level difference for proteins of HL-60 cell line in process of ATRA-induced differentiation in accordance with proteomic profiling results at 0, 3, 24, 48 and 96 hours after adding the inductor (there are shown 177 proteins with a statistically significant differences in expression (ANOVA p-value $\leq 10^{-7}$), which shape a clusters 1 and 2)

осуществляется на основании математического алгоритма, принимающего во внимание сходство профиля экспрессии белков и направление изменения их содержания (увеличение или уменьшение). Данный алгоритм определяет в том числе порядок следования кластеров временных точек 24 и 48 ч, отражающий высокую степень сходства профилей экспрессии белков в данных точках.

Функциональная аннотация этих дифференциально экспрессирующихся белков по категориям базы данных GeneOntology позволила определить белки, участвующие в функционировании иммунной системы (ИС), регуляции клеточной гибели (КГ), пролиферации (Пф), адгезии (Адг) и клеточном цикле (КЦ) (таблица).

Данные, представленные в таблице, демонстрируют, что 42 дифференциально экспрессирующихся белка активируемого кластера вовлечены в реализацию функций ИС и КГ, в то время как 29 белков ингибируемого кластера задействованы в реализации Пф, КЦ и Адг.

Анализ белков активируемого и ингибируемого кластеров в программном обеспечении geneXplain platform позволил определить потенциальные $T\Phi$ и ключевые молекулы, регулирующие дифференциально экспрессирующиеся белки. Для определения молекул, экспрессирующихся в клетках линии HL-60 на белковом уровне, модельные схемы были сопоставлены с результатами масс-спектрометрического анализа цитозольной и ядерной фракций клеток линии HL-60. Схемы регуляции представлены на рис. 2 и 3.

Дифференциально экспрессирующиеся под действием ATRA белки клеток линии HL-60, задействованные в функционировании ИС, регуляции КГ, Пф и КЦ (начало)

Идентификационный номер в базе данных UniProt	Имя гена	Название белка в базе данных UniProt	Биологический процесс	FC
	Дифферен	циально экспрессирующиеся белки активируемого кластера ↑		
P35579	MYH9	Миозин 9	ИС	6,1
P14618	РКМ	Пируваткиназа РКМ	ИС	4,5
P14598	NCF1	Цитозольный фактор нейтрофилов 1	ИС	2,6
P30740	SERPINB1	Ингибитор эластазы нейтрофилов	ИС	3,4
P05107	CD18	Интегрин бета 2	ИС	3,7
Q9BS26	ERP44	Белок эндоплазматического ретикулума 44	ИС	2,7
Q06323	PSME1	Субъединица 1 комплекса активатора протеасом	ИС	2,4
Q9Y3Z3	SAMHD1	Дезоксинуклеозидтрифосфат трифосфогидролаза SAMHD1	ИС	3,0
P18669	PGAM1	Фосфоглицератмутаза 1	ИС	3,5
P61158	ACTR3	Родственный актину белок 3	ИС	4,2
P07339	CTSD	Катепсин D	ИС	4,8
P52907	CAPZA1	Субъединица альфа 1 F-актин кэпирующего белка	ИС	5,2
P63261	ACTG1	Актин цитоплазматический 2	ИС	4,2
Q14019	COTL1	Коастозин-подобный белок	ИС	5,2
P04839	CYBB	Тяжелая цепь цитохрома b-245	ИС	2,8
P27824	CANX	Кальнексин	ИС	4,3
Q01518	CAP1	Аденилатциклаза-ассоциированный белок 1	ИС	3,8
Q99536	VAT1	Гомолог белка мембраны синаптических везикул VAT-1	ИС	4,6
P39656	DDOST	Субъединица 48кДа комплекса N-олигосахарид-трансферазы	ИС	3,2
P13796	LCP1	Пластин 2	ИС	5,8
P08575	CD45	Белковая тирозинфосфатаза рецепторного типа С	ИС	3,0
P30101	PDIA3	Белковая дисульфидизомераза АЗ	ИС + КГ	5,3
P26583	HMGB2	Белок В2 группы высокой подвижности	ИС + КГ	3,9
P14625	HSP90B1	Эндоплазмин	ИС + КГ	4,8
P09211	GSTP1	Глутатион-S-трансфераза Р	ИС + КГ	3,6
P04406	GAPDH	Глицеральдегид-3-фосфатдегидрогеназа	ИС + КГ	2,6
P04040	CAT	Каталаза	ИС + КГ	3,8
P10809	HSPD1	Белок теплового шока 60 кДа митохондриальный	ИС + КГ	6,2
P31146	CORO1A	Коронин 1А	ИС + КГ	1,6
P04083	ANXA1	Аннексин А1	ИС + КГ	5,1
Q13501	SQSTM1	Секвестосома 1	ΚГ	3,8
P63104	YWHAZ	14-3-3 белок зета/дельта	ΚГ	3,3
P68032	ACTC1	Актин	ΚГ	3,0
P23528	CFL1	Кофилин-1	ΚГ	2,6
O14745	SLC9A3R1	Кофактор регуляции обмена Na(+)/H(+)NHE-RF1	КГ	2,5

Дифференциально экспрессирующиеся под действием ATRA белки клеток линии HL-60, задействованные в функционировании ИС, регуляции КГ, Пф и КЦ (продолжение)

Идентификационный номер в базе данных UniProt	Имя гена	Название белка в базе данных UniProt	Биологический процесс	FC
Q9Y4L1	HYOU1	Активируемый при гипоксии белок 1	ΚГ	4,9
P30040	ERP29	Белок эндоплазматического ретикулума 29	ΚГ	4,2
P06733	ENO1	Енолаза альфа	ΚГ	2,3
P35232	PHB	Прохибитин	ΚГ	3,7
P11021	HSPA5	Белок-шаперон эндоплазматического ретикулума BiP	ΚГ	5,8
P61604	HSPE1	Белок теплового шока 10 кДа митохондриальный	ΚГ	4,2
P07237	P4HB	Белковая дисульфидизомераза PDI	ΚГ	3,9
	Дифферен	циально экспрессирующиеся белки ингибируемого кластера \downarrow		
Q9UQ80	PA2G4	Ассоциированный с Пф белок 2G4	Пф	0,2
P33993	MCM7	Фактор, разрешающий репликацию ДНК МСМ7	Пф	0,1
Q9NZI8	IGF2BP1	Связывающий мРНК инсулиноподобного фактора роста-2 белок 1	Пф	0,2
P12268	IMPDH2	Инозин-5-монофосфатдегидрогеназа 2	Пф	0,2
P13639	EEF2	Фактор элонгации 2	Пф	0,2
Q6PKG0	LARP1	La-родственный белок 1	Пф	0,3
P13010	XRCC5	Белок репарации ДНК XRCC5	Пф	0,3
P12004	PCNA	Ядерный антиген пролиферирующих клеток	Пф	0,4
Q9BQG0	MYBBP1A	Myb-связывающий белок 1А	КЦ	0,2
P06748	NPM1	Нуклеофосмин	КЦ	0,2
Q09028	RBBP4	Гистон-связывающий белок RBBP4	КЦ	0,2
P11142	HSPA8	Белок теплового шока 70кДа 8	КЦ	0,6
Q00839	HNRNPU	Гетерогенный ядерный рибонуклеопротеин U	КЦ	0,2
O00410	IPO5	Импортин-5	КЦ	0,3
P39748	FEN1	Флеп-эндонуклеаза 1	КЦ	0,3
Q04637	EIF4G1	Эукариотический фактор инициации трансляции 4, субъединица гамма 1	КЦ	0,3
P08238	HSP90AB1	Белок теплового шока HSP-90 бета	КЦ	0,2
015355	PPM1G	Белковая фосфатаза 1G	КЦ	0,4
P78527	PRKDC	Каталитическая субъединица ДНК-зависимой протеинкиназы	КЦ	0,3
P23246	SFPQ	Богатый пролином и глутамином фактор сплайсинга	КЦ	0,2
Q16543	CDC37	Hsp90 ко-шаперон Cdc37	КЦ	0,2
P07437	TUBB	Тубулин, бета цепь	КЦ	0,2
Q13148	TARDBP	ТАR ДНК-связывающий белок 43	КЦ	0,2
P68371	TUBB4B	Тубулин, бета-4В цепь	КЦ	0,3
P09429	HMGB1	Белок В1 группы высокой подвижности	Адг	0,2
P21333	FLNA	Филамин-А	Адг	0,2

Дифференциально экспрессирующиеся под действием ATRA белки клеток линии HL-60, задействованные в функционировании ИС, регуляции КГ, Пф и КЦ (окончание)

Идентификационный номер в базе данных UniProt	Имя гена	Название белка в базе данных UniProt	Биологический процесс	FC
P02786	TFRC	Рецептор к трансферину 1	Адг	0,2
Q13177	PAK2	Серин-треониновая протеинкиназа РАК 2	Адг	0,2
P29350	PTPN6	Белковая тирозинфосфатаза нерецепторного типа 6	Адг	0,4

Примечание. UniProt — открытая база данных последовательностей белков; FC (fold change) — изменение экспрессии во временной точке 96 ч по сравнению с контролем (0 ч).

Proteins of HL-60 cell line differentially expressed under ATRA treatment involved in the functioning of the immune system (IS), regulation of cell death (CD), proliferation (PF) and cell cycle (CC) (beginning)

Identity numbers in the UniProt	Gene title	The name of the protein in the database (UniProt)	Biological process	FC	
Differently expressed proteins of the activated cluster \uparrow					
P35579	МҮН9	Myosin 9	IS	6.1	
P14618	РКМ	Pyruvate kinase PKM	IS	4.5	
P14598	NCF1	Neutrophil cytosol factor 1	IS	2.6	
P30740	SERPINB1	Leukocyte elastase inhibitor	IS	3.4	
P05107	CD18	Integrin beta-2	IS	3.7	
Q9BS26	ERP44	Endoplasmic reticulum resident protein 44	IS	2.7	
Q06323	PSME1	Proteasome activator complex subunit 1	IS	2.4	
Q9Y3Z3	SAMHD1	Deoxynucleoside triphosphate triphosphohydrolase SAMHD1	IS	3.0	
P18669	PGAM1	Phosphoglycerate mutase	IS	3.5	
P61158	ACTR3	Actin-related protein 3	IS	4.2	
P07339	CTSD	Cathepsin D	IS	4.8	
P52907	CAPZA1	F-actin-capping protein subunit alpha-1	IS	5.2	
P63261	ACTG1	Actin, cytoplasmic 2	IS	4.2	
Q14019	COTL1	Coactosin-like protein	IS	5.2	
P04839	СҮВВ	Cytochrome b-245 heavy chain	IS	2.8	
P27824	CANX	Calnexin	IS	4.3	
Q01518	CAP1	Adenylyl cyclase-associated protein 1	IS	3.8	
Q99536	VAT1	Synaptic vesicle membrane protein VAT-1 homolog	IS	4.6	
P39656	DDOST	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit	IS	3.2	
P13796	LCP1	Plastin-2	IS	5.8	
P08575	CD45	Receptor-type tyrosine-protein phosphatase C	IS	3.0	
P30101	PDIA3	Protein disulfide-isomerase A3	IS + CD	5.3	
P26583	HMGB2	High mobility group protein B2	IS + CD	3.9	
P14625	HSP90B1	Endoplasmin	IS + CD	4.8	
P09211	GSTP1	Glutathione S-transferase P	IS + CD	3.6	

Российский ДЕТСКОЙ ГЕМАТОЛОГИИ и ОНКОЛОГИИ

Proteins of HL-60 cell line differentially expressed under ATRA treatment involved in the functioning of the immune system (IS), regulation of cell death (CD), proliferation (PF) and cell cycle (CC) (continuation)

Identity numbers in the UniProt	Gene title	The name of the protein in the database (UniProt)	Biological process	FC
P04406	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	IS + CD	2.6
P04040	CAT	Catalase	IS + CD	3.8
P10809	HSPD1	60 kDa heat shock protein, mitochondrial	IS + CD	6.2
P31146	CORO1A	Coronin-1A	IS + CD	1.6
P04083	ANXA1	Annexin A1	IS + CD	5.1
Q13501	SQSTM1	Sequestosome-1	CD	3.8
P63104	YWHAZ	14-3-3 protein zeta/delta	CD	3.3
P68032	ACTC1	Actin	CD	3.0
P23528	CFL1	Cofilin-1	CD	2.6
O14745	SLC9A3R1	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	CD	2.5
Q9Y4L1	HYOU1	Hypoxia up-regulated protein 1	CD	4.9
P30040	ERP29	Endoplasmic reticulum resident protein 29	CD	4.2
P06733	ENO1	Alpha-enolase	CD	2.3
P35232	PHB	Prohibitin	CD	3.7
P11021	HSPA5	Endoplasmic reticulum chaperone BiP	CD	5.8
P61604	HSPE1	10 kDa heat shock protein, mitochondrial	CD	4.2
P61604	HSPE1	10 kDa heat shock protein, mitochondrial	CD	4.2
P07237	P4HB	Protein disulfide-isomerase PDI	CD	3.9
		Differently expressed proteins of the inhibited cluster \downarrow		
Q9UQ80	PA2G4	Proliferation-associated protein 2G4	PF	0.2
P33993	MCM7	DNA replication licensing factor MCM7	PF	0.1
Q9NZI8	IGF2BP1	Insulin-like growth factor 2 mRNA-binding protein 1	PF	0.2
P12268	IMPDH2	Inosine-5'-monophosphate dehydrogenase 2	PF	0.2
P13639	EEF2	Elongation factor 2	PF	0.2
Q6PKG0	LARP1	La-related protein 1	PF	0.3
P13010	XRCC5	X-ray repair cross-complementing protein 5	PF	0.3
P12004	PCNA	Proliferating cell nuclear antigen	PF	0.4
Q9BQG0	MYBBP1A	Myb-binding protein 1A	CC	0.2
P06748	NPM1	Nucleophosmin	CC	0.2
Q09028	RBBP4	Histone-binding protein RBBP4	CC	0.2
P11142	HSPA8	Heat shock cognate 71 kDa protein	CC	0.6
Q00839	HNRNPU	Heterogeneous nuclear ribonucleoprotein U	CC	0.2
O00410	IPO5	Importin-5	CC	0.3
P39748	FEN1	Flap endonuclease 1	CC	0.3
Q04637	EIF4G1	Eukaryotic translation initiation factor 4 gamma 1	CC	0.3
P08238	HSP90AB1	Heat shock protein HSP 90-beta	CC	0.2
015355	PPM1G	Protein phosphatase 1G	CC	0.4

Proteins of HL-60 cell line differentially expressed under ATRA treatment involved in the functioning of the immune system (IS), regulation of cell death (CD), proliferation (PF) and cell cycle (CC) (end)

Identity numbers in the UniProt	Gene title	The name of the protein in the database (UniProt)	Biological process	FC
P78527	PRKDC	DNA-dependent protein kinase catalytic subunit	CC	0.3
P23246	SFPQ	Splicing factor, proline- and glutamine-rich	CC	0.2
Q16543	CDC37	Hsp90 co-chaperone Cdc37	CC	0.2
P07437	TUBB	Tubulin beta chain	CC	0.2
Q13148	TARDBP	TAR DNA-binding protein 43	CC	0.2
P68371	TUBB4B	Tubulin beta-4B chain	CC	0.3
P09429	HMGB1	High mobility group protein B1	Adh	0.2
P21333	FLNA	Filamin-A	Adh	0.2
P02786	TFRC	Transferrin receptor protein 1	Adh	0.2
Q13177	PAK2	Serine/threonine-protein kinase PAK 2	Adh	0.2
P29350	PTPN6	Tyrosine-protein phosphatase non-receptor type 6	Adh	0.4

Note. UniProt — is a open database of protein sequence; FC (fold change) — is changes in gene expression in time point 96 h compared with the control (0h); Adh - adhesion.

Рис. 2. Схема регуляции белков активируемого кластера. Фиолетовым цветом показаны ТФ, зеленым — промежуточные молекулы, розовым — ключевая молекула (HDAC1). Красным цветом выделены молекулы модельной схемы, регистрируемые на белковом уровне масс-спектрометрическим методом в цитозольной или ядерной фракции клеток линии HL-60. Компоненты модельных схем соединены линиями с узлами, обозначающими межмолекулярное взаимодействие, обнаруженное в программном обеспечении geneXplain platform по базе данных TRANSPATH[®], тип взаимодействия обозначен по кодировке цли ацетилирование; незаштрихованные квадраты — фосфорилирование или деацетилирование, или дефосфорилирование; заштрихованный круг — сумоилирование или убиквитинилирование; линия со стрелкой после узла направлена в сторону конечного продукта реакции

Fig. 2. The scheme of protein regulation of the activated cluster. Purple color shows the transcription factors, green – intermediate molecules, pink – key molecule (HDAC1). The molecules of the model scheme registered on the protein level by the mass spectrometric method in the cytosolic or nuclear fraction of HL-60 cells are marked in red. The components of the model scheme are connected by lines to nodes denoting the intermolecular interaction detected in the geneXplain platform software using the TRANSPATH[®] database, type of interaction is indicated by the geneXplain platform legend: unshaded squares – phosphorylation or acetylation; unshaded circle – cleavage of the molecule or deacetylation or dephosphorylation; shaded circle sumoylation or ubiquitinylation; the line with the arrow after the node is directed toward the final product of the reaction

Рис. 3. Схема регуляции белков ингибирумого кластера. Фиолетовым цветом показаны ТФ, зеленым — промежуточные молекулы, розовым — ключевая молекула (RNF96). Красным цветом выделены молекулы модельной схемы, регистрируемые на белковом уровне масс-спектрометрическим методом в цитозольной или ядерной фракции клеток линии HL-60. Компоненты модельных схем соединены линиями с узлами, обозначающими межмолекулярное взаимодействие, обнаруженное в программном обеспечении geneXplain platform по базе данных TRANSPATH[®], тип взаимодействия обозначен по кодировке geneXplain platform: незаштрихованные квадраты — фосфорилирование или ацесумоилирование, или дефосфорилирование; заштрихованный круг сумоилирование или убиквитинилирование; линия со стрелкой после узла направлена в сторону конечного продукта реакции

Fig. 3. The scheme of protein regulation of the inhibited cluster. Purple color shows the transcription factors, green - intermediate molecules, pink – key molecule (RNF96). The molecules of the model scheme registered on the protein level by the mass spectrometric method in the cytosolic or nuclear fraction of HL-60 cells are marked in red. The components of the model scheme are connected by lines to nodes denoting the intermolecular interaction detected in the geneXplain platform software using the TRANSPATH[®] database, type of interaction is indicated by the geneXplain platform legend: unshaded squares – phosphorylation or acetylation; unshaded circle – cleavage of the molecule or deacetylation or dephosphorylation; shaded circle – sumoylation or ubiquitinylation; the line with the arrow after the node is directed toward the final product of the reaction

Ключевыми молекулами схем, регулирующих активируемый и ингибируемый кластеры, оказались деацетилаза гистонов 1 (HDAC1) и ядерный корепрессор RNF96 (TRIM28) соответственно.

Среди предсказанных ТФ схемы активируемого кластера оказались: AP-2 альфа (AP-2alpha), NF-YA, POU6F1, RelA-p65, RNF96, HMGIY, TATA-бокс-связывающий белок (TBP), транскрипционный репрессор Bcl-6 и ядерный рецептор к эстрогену альфа (ER alpha).

ТФ в схеме регуляции ингибируемого кластера: Sox2, HIF-1, C/EBP альфа, ATF2, E2F-1 и Ikaros.

ТФ СРВР (онкосупрессор *KLF6*) и Sp1 оказались представленными в обеих схемах.

Среди молекул модельных схем CDK2, DNA-PKcs, HDAC1, HMGIY, Ubc9, RNF96, p38 альфа идентифицировали в ядерной и/или цитозольной фракции клеток линии HL-60 на белковом уровне.

Ряд молекул, такие как HDAC1, RNF96, Sp1 и CPBP (онкосупрессор *KLF6*), пересекаются между схемами. В том числе ключевая молекула ингибируемого кластера RNF96 оказывается TФ на схеме активируемого кластера. В свою очередь, ключевая молекула активируемого кластера – HDAC1 участвует в передаче сигнала от RNF96 к TФ Sp1 на схеме регуляции ингибируемого кластера.

Обсуждение

Применение масс-спектрометрического профилирования к клеткам линии HL-60 через 0, 3, 24, 48 и 96 ч после обработки ATRA позволило определить дифференциально экспрессирующиеся по мере прохождения дифференцировки белки. Они функционально ассоциированы с выполнением иммунных функций, а также развитием апоптоза, что отражает приобретение клетками линии HL-60 фенотипа зрелых гранулоцитов. Выявленные в настоящей работе белки можно рассматривать как панель маркеров дифференцировки наряду с поверхностными молекулами CD38 и CD11b, оцениваемыми с помощью проточной цитофлуориметрии.

Используя компьютерное моделирование, основанное на поиске ключевых регуляторов, можно сделать попытку реконструировать молекулярную сигнальную сеть, ответственную за изменение экспрессии белков, и представить ее в виде модельной схемы. Ключевые молекулы модельных схем – HDAC1 и RNF96 (TRIM28) – являются главными регуляторами, приводящими к изменению экспрессии белков, наблюдаемому в нашем эксперименте, следовательно, можно предположить, что именно они будут наиболее чувствительны к фармакологическому воздействию или будут представлять собой потенциальные терапевтические мишени «1-й линии».

В качестве ключевой молекулы на схеме регуляции активируемого кластера выступает HDAC1, играющая

важную роль в эпигенетической регуляции транскрипции и КЦ. Деацетилирование гистонов по аминокислотным остаткам лизина ведет к конденсации хроматина и репрессии транскрипции. Для клеток различных опухолей, в том числе лейкозов, была показана повышенная экспрессия HDAC1 [15]. Целевое фармакологическое воздействие на деацетилазы гистонов может представлять собой альтернативный подход к терапии ОПЛ. К настоящему моменту ингибиторы HDACs, такие как вальпроевая кислота, использовали в комбинации с ATRA или ингибитором ДНК-метилтрансферазы азацитидином для лечения пациентов с острым миелоидным лейкозом (ОМЛ), для которых не применим стандартный терапевтический подход [16, 17]. Примечательно, что HDAC1 является ключевым регулятором именно активируемого кластера, на основании чего можно предположить, что транскрипция генов, соответствующих белкам с увеличенной экспрессией, регулируется за счет эпигенетических механизмов.

Модельную схему, регулирующую ингибируемый кластер, возглавляет транскрипционный корепрессор RNF96 (TRIM28), влияющий на такие важные для регуляции баланса Пф/дифференцировки молекулы, как CDKN1A/p21 и p53 [18, 19]. Транскрипционный репрессор RNF96 (TRIM28) мало исследован в контексте ОПЛ или ОМЛ и представляет собой потенциальную мишень для терапевтического воздействия.

HDAC1 и транскрипционный корепрессор RNF96 (TRIM28) присутствуют на обеих модельных схемах, выполняя в одном случае роль ключевой молекулы, а в другом — роль $T\Phi$ (RNF96 для схемы активируемого кластера) или молекулы, передающей сигнал (HDAC1 для схемы ингибируемого кластера), что, вероятно, отражает тесную взаимосвязь между активацией и ингибированием в клетке.

TΦ, с наибольшей вероятностью ответственные за изменение экспрессии активируемых и ингибируемых белков и регулируемые ключевыми молекулами, можно рассматривать как потенциальные терапевтические мишени «2-й линии».

В целом все предсказанные ТФ можно разделить на благоприятствующие Пф и клеточному росту, или наоборот — содействующие дифференцировке и апоптозу.

Некоторые ТФ модельных схем, такие как Bcl-6, ER альфа и SOX2 вовлечены в Пф, рост опухолей, ингибирование онкосупрессоров, таких как p53, и ранее рассматривались в качестве потенциальных терапевтических мишеней.

Например, Bcl-6 играет важную роль в развитии лейкозов. В клетках хронического миелоидного лейкоза, прежде всего в популяции стволовых клеток или лейкоз-инициирующих клеток, Bcl-6 супрессирует ген *p53*, предотвращая развитие апоптоза, в то время

Российский ДЕТСКОЙ ГЕМАТОЛОГИИ и ОНКОЛОГИИ

как фармакологическое ингибирующее воздействие на Bcl-6 ведет к эрадикации популяции лейкозных стволовых клеток [20]. ER альфа, как и многие стероидные гормоны и их лиганды, вовлечен в регуляцию Пф и дифференцировки клеток. Рецепторы к эстрогену уже рассматривались как потенциальные мишени для терапии лейкозов: на основании биоинформатического предсказания и последующего нокдауна гена рецептор к эстрогену бета был выявлен как потенциальная клеточная мишень для изофлавоноида диосметина, вызывающего апоптоз в клетках ОМЛ [21]. В то же время в другом исследовании было показано, что селективный модулятор эстрогеновых рецепторов тамоксифен активирует ER альфа, что индуцирует апоптоз в гемопоэтических стволовых клетках и плюрипотентных прогениторных клетках, оказывая противолейкозный эффект [22]. Среди молекул схемы, регулирующей ингибируемый кластер дифференциально экспрессирующихся белков, представлен ТФSOX2, являющийся одним изосновных регуляторов раковых стволовых клеток. Ранее было показано, что экспрессия SOX2 была повышена в клетках ОМЛ [23]. Целевое воздействие на SOX2 уже рассматривалось в качестве подхода для лечения глиобластом [24]. Возможно, ингибирование SOX2 будет иметь антипролиферативный эффект и в случае ОПЛ.

Другая группа ТФ, включающая Sp1, C/EBP альфа и CPBP (онкосупрессор *KLF6*), способствует прохождению дифференцировки или задействована в ингибировании онкогенов, таких как *c*-*MYC*, и подавлении опухолевого роста.

ТФ Sp1 задействован в развитии миелоидных клеток, активируя транскрипцию киназы гемопоэтических клеток человека и поверхностного гранулоцитарного маркера CD11b [25, 26]. ТФ С/ЕВР альфа контролирует остановку Пф и необходим для гранулоцитарной дифференцировки миелоидных клеток-предшественников. Мутации в гене *С/ЕВР альфа* приводят к блоку дифференцировки [27]. Роль *KLF6* как онкосупрессора больше изучена на примере солидных опухолей, например колоректального рака [28], но также было показано снижение экспрессии *KLF6* в клетках, полученных от больных ОМЛ [29].

ТФ АР-2 альфа негативно регулирует протоонкоген *с-МҮС* и *С/ЕВР альфа*, что было показано на примере солидных опухолей [30, 31]. Супрессия *с-МҮС*, многократно амплифицированного в клетках линии HL-60, ведет к торможению Пф и опухолевого роста, в то время как ингибирование *С/ЕВР альфа*, как было упомянуто выше, препятствует прохождению дифференцировки в контексте ОПЛ, что может указывать на сложную роль AP-2 альфа в биологии лейкозов и определяет терапевтический потенциал данного ТФ с точки зрения как ингибирования, так и активации. Наконец, среди молекул модельных схем, идентифицированных в ядерной и/или цитозольной фракции клеток линии HL-60 на белковом уровне, оказались ключевые молекулы – HDAC1 и RNF96, что усиливает их значимость в качестве потенциальных терапевтических мишеней. Также масс-спектрометрическим методом удалось зарегистрировать ряд промежуточных молекул, участвующих в передаче сигнала от ключевых молекул к ТФ модельных схем, и задействованных в регуляции КЦ (CDK2), репарации ДНК (DNA-PKcs), убиквитинилирования (Ubc9) и апопотоза (p38 альфа).

Заключение

Применение комбинации методов высокопроизводительного протеомного анализа и биоинформатического моделирования в исследовании ATRA-индуцированной дифференцировки клеток линии HL-60 позволило выявить ключевые молекулы - HDAC1 и RNF96 (TRIM28), с наибольшей вероятностью регулирующие дифференциально экспрессирующиеся белки активируемого и ингибируемого кластеров соответственно, которые можно рассматривать как потенциальные терапевтические мишени «1-й линии». Потенциальными терапевтическими мишенями «2-й линии» являются ТФ, присутствующие в модельных схемах регуляции белков активируемого и ингибируемого кластеров, такие как Bcl-6, ER альфа, SOX2, Sp1, C/EBP альфа и CPBP (онкосупрессор *КLF6*). К настоящему моменту были осуществлены попытки целевого фармакологического воздействия на ряд молекул модельных схем, в то же время такие функционально важные молекулы, как RNF96 (TRIM28), СРВР (онкосупрессор *KLF6*) ранее не рассматривались в контексте ОПЛ и представляют большой интерес с точки зрения терапевтического воздействия.

В данном исследовании мы провели моделирование молекулярного каскада в направлении «снизу вверх», начиная от белков с измененным содержанием через Т Φ их регулирующие, до ключевых молекул, с наибольшей вероятностью регулирующих дифференциально экспрессирующиеся белки. Предложенный подход к моделированию подразумевает предсказание более ранних молекулярных событий по отношению к временной точке, в которой белки дифференциально экспрессировались (96 ч), поэтому для предсказанных ключевых молекул и ТФ мы предполагаем наиболее выраженный регуляторный эффект и терапевтический потенциал. В то же время сама концепция построения модельных сигнальных сетей не подразумевала выбор одной молекулы как мишени для фармакологического воздействия. Начальный этап поиска, представленный в работе, направлен на определение панели потенциальных терапевтических мишеней на основании их регуляторных свойств,

Р_{Журнал} ДЕТСКОЙ ГЕМАТОЛОГИИ и ОНКОЛОГИИ

которые мы оценивали с помощью биоинформатического предсказания, и факта изменений в экспрессии в выбранной модельной клеточной линии на уровне белка, определяемых масс-спектрометрическим методом.

Разработанная платформа, сочетающая высокопроизводительное масс-спектрометрическое профилирование и биоинформатическое предсказание ключевых регуляторов, была опробована на стабильной клеточной линии HL-60, представляющей удобный объект для пилотного исследования. При этом следует учитывать, что экстраполяция результатов, получаемых для стабильной клеточной линии, на биологические процессы in vivo ограничена, прежде всего, в связи с изменениями характеристик клеток, происходящими при многих пассажах культивирования. Для валидации полученных в данном исследовании моделей требуются дополнительные эксперименты с внедрением экспрессионных конструкций или нокдауном генов, соответствующих потенциальным терапевтическим мишеням. Сильной стороной представленной платформы является ее применимость к моделям, более точно отражающим свойства биологического объекта *in vivo*, например к первичным культурам клеток. Применимость разработанной платформы не зависит от используемого ингибитора или индуктора, что обусловливает хороший потенциал для исследований в области персонализированной медицины.

Конфликт интересов/Conflict of interest

Авторы заявляют об отсутствии конфликта интересов.

The authors declare no conflict of interest.

Финансирование/Financing

Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2013—2020 гг. с использованием оборудования Центра коллективного пользования «Протеом человека» (ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»), поддержанного Минобрнауки России (уникальный идентификатор проекта RFMEFI62117X0017).

The research was carried out within the framework of the Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020 using the equipment of the Center for Collective Use "Human Proteome" (V.N. Orekhovich Scientific Research Institute of Biomedical Chemistry), supported by the Ministry of Education and Science of Russia (unique identifier of the project RFMEFI62117X0017).

ЛИТЕРАТУРА / REFERENCES

1. Di Girolamo F, Lante I., Muraca M., Putignani L. The Role of Mass Spectrometry in the "Omics" Era. Curr Org Chem 2013;17(23):2891–905.

doi: 10.2174/1385272817888131118162725. 2. Wu H.Y., Goan Y.G., Chang Y.H. et al. Qualification and Verification of Serological Biomarker Candidates for Lung Adenocarcinoma by Targeted Mass Spectrometry. J Proteome Res 2015;14(8):3039–50. doi: 10.1021/pr501195t. 3. Naryzhny S.N., Zgoda V.G., Maynskova M.A. et al. Combination of virtual and experimental 2DE together with ESI LC-MS/MS gives a clearer view about proteomes of human cells and plasma. Electrophoresis 2016;37(2):302–9. doi: 10.1002/elps.201500382.

4. Kopylov A.T., Ilgisonis E.V., Moysa A.A. et al. Targeted Quantitative Screening of Chromosome 18 Encoded Proteome in Plasma Samples of Astronaut Candidates. J Proteome Res 2016;15(11):4039–46.

doi: 10.1021/acs.jproteome.6b00384. 5. Novikova S.E., Tikhonova O.V., Kurbatov L.K. et al. Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation. Eur J Mass Spectrom (Chichester) 2017;23(4):202-8. doi: 10.1177/1469066717719848. 6. Breitman T.R., Selonick S.E., Collins S.J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 1980;77(5):2936-40. PMID: 6930676. 7. Dalton W.T., Ahearn M.J., McCredie K.B. et al. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood 1988;71(1):242-7. PMID: 3422031. 8. Liu S.M., Chen W., Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep 2014;4:5577. doi: 10.1038/srep05577. 9. Tasseff R., Jensen H.A., Congleton J. et al. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017;7(1):14327. doi: 10.1038/s41598-017-14523-5. 10. Zheng P.Z., Wang K.K., Zhang Q.Y. et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A 2005;102(21):7653-8. doi: 10.1073/pnas.0502825102. 11. Bertagnolo V., Grassilli S., Bavelloni A. et al. Vav1 modulates protein expression during AT-RA-induced maturation of APL-derived promyelocytes: a proteomic-based analysis. J Proteome Res 2008;7(9):3729–36. doi: 10.1021/pr7008719.

12. Valiuliene G., Stirblyte I., Cicenaite D. et al. Belinostat, a potent HDACi, exerts antileukaemic effect in human acute promyelocytic leukaemia cells via chromatin remodeling. J Cell Mol Med 2015;19(7):1742-55. doi: 10.1111/jcmm.12550. 13. Simicevic J., Schmid A.W., Gilardoni P.A. et al. Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics. Nat Methods 2013;10(6):570-6. doi: 10.1038/nmeth.2441. 14. Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009;6(5):359-62. doi: 10.1038/nmeth.1322. 15. Tickenbrock L., Klein H.U., Trento C. et al.; Study Alliance Leukemia Group. Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leuk Res 2011:35(5):620-5. doi: 10.1016/j.leukres.2010.11.006. 16. Fredly H., Gjertsen B.T., Bruserud O. Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics 2013;5(1):12. doi: 10.1186/1868-7083-5-12. 17. Min C., Moore N., Shearstone J.R. et al. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia, PLoS One 2017;12(1):e0169128. doi: 10.1371/journal.pone.0169128. 18. Wang C., Ivanov A., Chen L. et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 2005;24(18):3279-90. doi: 10.1038/sj.emboj.7600791. 19. Lee Y.K., Thomas S.N., Yang A.J., Ann D.K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem 2007;282(3):1595-606. doi: 10.1074/jbc.M606306200. 20. Hurtz C., Hatzi K., Cerchietti L. et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med 2011;208(11):2163-74. doi: 10.1084/jem.20110304. 21. Rota S.G., Roma A., Dude I. et al. Estrogen Receptor β Is a Novel Target in Acute Myeloid

Leukemia. Mol Cancer Ther 2017;16(11):2618–26. doi: 10.1158/1535-7163.MCT-17-0292. 22. Sánchez-Aguilera A., Arranz L., Martín-Pérez D. et al. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steadystate hematopoiesis. Cell Stem Cell 2014;15(6):791–804.

doi: 10.1016/j.stem.2014.11.002.
23. Picot T., Aanei C.M., Fayard A. et al. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol 2017;39(7):1010428317716629.
doi: 10.1177/1010428317716629.

24. Garros-Regulez L., Garcia I., Carrasco-Garcia E. et al. Targeting SOX2 as a Therapeutic Strategy in Glioblastoma. Front Oncol 2016;6:222. doi: 10.3389/fonc.2016.00222.
25. Hauses M., Tönjes R.R., Grez M. The transcription factor Sp1 regulates the myeloid-specific expression of the human hematopoietic cell kinase (HCK) gene through binding to two adjacent GC boxes within the HCK promoter-proximal region. J Biol Chem 1998;273(48):31844– 52. PMID: 9822652.

26. Chen H.M., Pahl H.L., Scheibe R.J. et al. The Sp1 transcription factor binds the CD11b promoter specifically in myeloid cells *in vivo* and is essential for myeloid-specific promoter activity. J Biol Chem 1993;268(11):8230–9. PMID: 8096519.

 Pabst T., Mueller B.U., Zhang P. et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001;27(3):263–70. doi: 10.1038/85820.
 Reeves H.L., Narla G., Ogunbiyi O. et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 2004;126(4):1090–103. PMID: 15057748.
 Humbert M., Halter V., Shan D. et al. Deregulated expression of Kruppel-like fac-

Deregulated expression of Kruppel-like factors in acute myeloid leukemia. Leuk Res 2011;35(7):909–13.

doi: 10.1016/j.leukres.2011.03.010. 30. Yu L., Hitchler M.J., Sun W. et al. AP-2alpha Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes. J Oncol 2009;2009:780874. doi: 10.1155/2009/780874.

31. Bennett K.L., Romigh T., Arab K. et al. Activator protein 2 alpha (AP2alpha) suppresses 42 kDa C/CAAT enhancer binding protein alpha (p42(C/EBPalpha)) in head and neck squamous cell carcinoma. Int J Cancer 2009;124(6):1285–92. doi: 10.1002/ijc.24087.

Статья поступила в редакцию: 25.05.2018. Принята в печать: 06.07.2018. Article was received by the editorial staff: 25.05.2018. Accepted for publication: 06.07.2018.

-

.....