Роль тромбоцитов в гематогенном метастазировании опухолей
https://doi.org/10.21682/2311-1267-2024-11-2-61-66
Аннотация
Общеизвестными функциями тромбоцитов являются участие в системе гемостаза и тромбообразование, которые в свою очередь исполняются путем их адгезии к поврежденным тканям, а также агрегации между собой с образованием гемостатической пробки, перекрывающей повреждение. Способности к адгезии и агрегации тромбоцитов определяются их специфическими мембранными гликопротеинами.
Однако функционал тромбоцитов не ограничивается исключительно тромбообразованием. К примеру, имеются данные об использовании опухолевыми клетками тромбоцитов для осуществления метастазирования. Настоящая публикация обобщает международную литературу, посвященную роли тромбоцитов в гематогенном метастазировании опухолей.
Об авторах
П. В. КраличкинРоссия
Павел Викторович Краличкин: врач-детский онколог стационара кратковременного лечения
117997, Москва, ул. Саморы Машела, 1
Д. Ю. Качанов
Россия
д.м.н., заместитель директора Института онкологии, радиологии и ядерной медицины и заведующий отделением клинической онкологии
117997, Москва, ул. Саморы Машела, 1
А. В. Пшонкин
Россия
к.м.н., врач-гематолог, врач-детский онколог, заведующий стационаром кратковременного лечения
117997, Москва, ул. Саморы Машела, 1
П. А. Жарков
Россия
д.м.н., врач-педиатр, врач-гематолог консультативного отделения, заведующий отделом патологии гемостаза
Web of Science ResearcherID: AAP-9203-2020
117997, Москва, ул. Саморы Машела, 1
Список литературы
1. Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9. doi:10.1038/nature21706.
2. Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36:195–8. doi: 10.1007/s10555-017-9677-x.
3. Holinstat M., Tourdot B.E. Coronary heart disease risk factors take a disproportional toll on women. Arterioscler Thromb Vasc Biol. 2015;35(4):750–1. doi:10.1161/ATVBAHA.115.305466.
4. Koupenova M., Mick E., Mikhalev E., Benjamin E.J., Tanriverdi K., Freedman J.E. Sex diff erences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7. doi: 10.1161/ATVBAHA.114.304954.
5. Clemetson K.J. Platelets and pathogens. Cell Mol Life Sci. 2010;67(4):495–8. doi: 10.1007/s00018-009-0204-2.
6. Stark R.J., Aghakasiri N., Rumbaut R.E. Platelet-derived Toll-like receptor 4 (Tlr-4) is suffi cient to promote microvascular thrombosis in endotoxemia. PLoS One. 2012;7(7):e41254. doi: 10.1371/journal.pone.0041254.
7. Cox D., Kerrigan S.W., Watson S.P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost. 2011;9(6):1097–107. doi: 10.1111/j.1538-7836.2011.04264.x.
8. Elgueta R., Benson M.J., de Vries V.C., Wasiuk A., Guo Y., Noelle R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72. doi: 10.1111/j.1600-065X.2009.00782.x.
9. Danese S., Katz J.A., Saibeni S., Papa A., Gasbarrini A., Vecchi M., Fiocchi C. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of infl ammatory bowel disease patients. Gut. 2003;52(10):1435–41. doi: 10.1136/gut.52.10.1435.
10. Yacoub D., Hachem A., Théorêt J.F., Gillis M.A., Mourad W., Merhi Y. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Arterioscler Thromb Vasc Biol. 2010;30(12):2424–33. doi: 10.1161/ATVBAHA.110.216143.
11. Semple J.W., Italiano J.E. Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. doi: 10.1038/nri2956.
12. Youssefi an T., Drouin A., Massé J.M., Guichard J., Cramer E.M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specifi c subcellular compartment and is enhanced by platelet activation. Blood. 2002;99(11):4021–9. doi: 10.1182/blood-2001-12-0191.
13. Maouia A., Rebetz J., Kapur R., Semple J.W. The Immune Nature of Platelets Revisited. Transfus Med Rev. 2020;34(4):209–20. doi: 10.1016/j.tmrv.2020.09.005.
14. Wong C.H., Jenne C.N., Petri B., Chrobok N.L., Kubes P. Nucleation of platelets with blood-borne pathogens on Kupff er cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol. 2013;14(8):785–92. doi: 10.1038/ni.2631.
15. Mishan M.A., Ahmadiankia N., Bahrami A.R. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy. Cell Biol Int. 2016;40(9):955–67. doi: 10.1002/cbin.10631.
16. Seyfried T.N., Huysentruyt L.C. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. doi: 10.1615/critrevoncog.v18.i1-2.40.
17. Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34. doi: 10.1038/nrc3004.
18. Elaskalani O., Berndt M.C., Falasca M., Metharom P. Targeting Platelets for the Treatment of Cancer. Cancers (Basel). 2017;9(7):94. doi: 10.3390/cancers9070094.
19. Melki I., Tessandier N., Zuff erey A., Boilard E. Platelet microvesicles in health and disease. Platelets. 2017;28(3):214–21. doi: 10.1080/09537104.2016.1265924.
20. Naderi-Meshkin H., Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol. 2018;233(12):9167–78. doi: 10.1002/jcp.26937.
21. Reneman R.S., Hoeks A.P. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput. 2008;46(5):499–507. doi: 10.1007/s11517-008-0330-2.
22. Erpenbeck L., Schön M.P. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–36. doi: 10.1182/blood-2009-10-247296.
23. Gay L.J., Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4. doi: 10.1016/j.ccr.2011.11.001.
24. Kitamura T., Qian B.Z., Pollard J.W. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. doi: 10.1038/nri3789.
25. Palumbo J.S., Degen J.L. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res. 2007;120 Suppl 2: S22–8. doi: 10.1016/S0049-3848(07)70127-5.
26. Borsig L. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther. 2008;8(8):1247–55. doi: 10.1586/14737140.8.8.1247.
27. Placke T., Örgel M., Schaller M., Jung G., Rammensee H.G., Kopp H.G., Salih H.R. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8. doi: 10.1158/0008-5472.CAN-11-1872.
28. Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S., Carbone D.P. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically aff ects the diff erentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66. PMID: 9834220.
29. Laxmanan S., Robertson S.W., Wang E., Lau J.S., Briscoe D.M., Mukhopadhyay D. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun. 2005;334(1):193–8. doi: 10.1016/j.bbrc.2005.06.065.
30. Reddig P.J., Juliano R.L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39. doi: 10.1007/s10555-005-5134-3.
31. Alfano D., Iaccarino I., Stoppelli M.P. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem. 2006;281(26):17758–67. doi: 10.1074/jbc.M601812200.
32. Douma S., Van Laar T., Zevenhoven J., Meuwissen R., Van Garderen E., Peeper D.S. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9. doi: 10.1038/nature02765.
33. Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62. doi: 10.1016/j.blre.2014.10.003.
34. Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi: 10.1038/nrc2088.
35. Tanaka K., Okugawa Y., Toiyama Y., Inoue Y., Saigusa S., Kawamura M., Araki T., Uchida K., Mohri Y., Kusunoki M. Brainderived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One. 2014;9(5):e96410. doi: 10.1371/journal.pone.0096410.
36. Xiao Y.C., Yang Z.B., Cheng X.S., Fang X.B., Shen T., Xia C.F., Liu P., Qian H.H., Sun B., Yin Z.F., Li Y.F. CXCL8, overexpressed in colorectal cancer, enhances the resistance of colorectal cancer cells to anoikis. Cancer Lett. 2015;361(1):22–32. doi: 10.1016/j.canlet.2015.02.021.
37. Zeng Q., McCauley L.K., Wang C.Y. Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem. 2002;277(51):50137–42. doi: 10.1074/jbc.M208952200.
38. Luey B.C., May F.E. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8. doi: 10.1186/s12943-015-0482-2.
39. Freedman J.E., Loscalzo J., Barnard M.R., Alpert C., Keaney J.F., Michelson A.D. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–6. doi: 10.1172/JCI119540.
40. Chanvorachote P., Pongrakhananon V., Chunhacha P. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation. Biomed Res Int. 2014;2014:941359. doi: 10.1155/2014/941359.
41. Bao W., Qiu H., Yang T., Luo X., Zhang H., Wan X. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One. 2013;8(7):e70616. doi: 10.1371/journal.pone.0070616.
42. Jie X.X., Zhang X.Y., Xu C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget. 2017;8(46):81558–71. doi: 10.18632/oncotarget.18277.
43. Moustakas A., Heldin C.H. Signaling networks guiding epithelialmesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20. doi: 10.1111/j.1349-7006.2007.00550.x.
44. Palena C., Hamilton D.H., Fernando R.I. Infl uence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8(6):713–22. doi: 10.2217/fon.12.59.
45. Li N. Platelets in cancer metastasis: To help the “villain” to do evil. Int J Cancer. 2016;138(9):2078–87. doi: 10.1002/ijc.29847.
46. McCarty O.J., Mousa S.A., Bray P.F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and fi rm adhesion under dynamic fl ow conditions. Blood. 2000;96(5):1789–97. PMID: 10961878.
47. Janowska-Wieczorek A., Wysoczynski M., Kijowski J., MarquezCurtis L., Machalinski B., Ratajczak J., Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60. doi: 10.1002/ijc.20657.
48. Коваленко Т.А., Пантелеев М.А., Свешникова А.Н. Роль тканевого фактора в метастазировании, неоангиогенезе и гемостазе при онкологических заболеваниях. Онкогематология. 2019;14(2):70–85. doi: 10.17650/1818-8346-2019-14-2-70-85.
49. Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. Пространственная динамика свертывания крови. Российский химический журнал. 2007;51(1):45–50.
50. Подоплелова Н.А., Сулимов В.Б., Тащилова А.С., Ильин И.С., Пантелеев М.А., Ледeнева И.В., Шихалиев Х.С. Свертывание крови в XXI веке: новые знания, методы и перспективы для терапии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(1):139–57. doi: 10.24287/1726-1708-2020-19-1-139-157.
51. Fischer E.G., Riewald M., Huang H.Y., Miyagi Y., Kubota Y., Mueller B.M., Ruf W. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest. 1999;104(9):1213–21. doi: 10.1172/JCI7750.
52. Orellana R., Kato S., Erices R., Bravo M.L., Gonzalez P., Oliva B., Cubillos S., Valdivia A., Ibañez C., Brañes J., Barriga M.I., Bravo E., Alonso C., Bustamente E., Castellon E., Hidalgo P., Trigo C., Panes O., Pereira J., Mezzano D., Cuello M.A., Owen G.I. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290. doi: 10.1186/s12885-015-1304-z.
53. Läubli H., Spanaus K.S., Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583–91. doi: 10.1182/blood-2008-10-186585.
54. Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90. doi: 10.1016/j.ccr.2011.09.009.
55. Padua D., Zhang X.H., Wang Q., Nadal C., Gerald W.L., Gomis R.R., Massagué J. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77. doi: 10.1016/j.cell.2008.01.046.
56. Bielenberg D.R., Zetter B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015;21(4):267–73. doi: 10.1097/PPO.0000000000000138.
57. Wojtukiewicz M.Z., Sierko E., Hempel D., Tucker S.C., Honn K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249–62. doi: 10.1007/s10555-017-9673-1.
58. He A.D., Xie W., Song W., Ma Y.Y., Liu G., Liang M.L., Da X.W., Yao G.Q., Zhang B.X., Gao C.J., Xiang J.Z., Ming Z.Y. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6. Sci Rep. 2017;7(1):3989. doi: 10.1038/s41598-017-02801-1.
59. Banskota S., Gautam J., Regmi S.C., Gurung P., Park M.H., Kim S.J., Nam T.G., Jeong B.S., Kim J.A. BJ-1108, a 6-Amino-2,4,5- Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX. Pathway. PLoS One. 2016;11(1):e0148133. doi: 10.1371/journal.pone.0148133.
60. Wang S., Li Z., Xu R. Human Cancer and Platelet Interaction, a Potential Therapeutic Target. Int J Mol Sci. 2018;19(4):1246. doi: 10.3390/ijms19041246.
Рецензия
Для цитирования:
Краличкин П.В., Качанов Д.Ю., Пшонкин А.В., Жарков П.А. Роль тромбоцитов в гематогенном метастазировании опухолей. Российский журнал детской гематологии и онкологии (РЖДГиО). 2024;11(2):61-66. https://doi.org/10.21682/2311-1267-2024-11-2-61-66
For citation:
Kralichkin P.V., Kachanov D.Yu., Pshonkin A.V., Zharkov P.A. Role of platelets in hematogenous metastasis of tumors. Russian Journal of Pediatric Hematology and Oncology. 2024;11(2):61-66. (In Russ.) https://doi.org/10.21682/2311-1267-2024-11-2-61-66