The relevance of beta-thalassemia molecular-genetic diagnostics in Russian Federation
https://doi.org/10.21682/2311-1267-2024-11-4-89-97
Abstract
Beta-thalassemia being one of the most widespread monogenic diseases in the world is characterized by the HBB gene mutations leading to beta-globin chain decrease. Despite of the specific laboratory features diagnosis of beta-thalassemia may seem difficult especially when speaking of minor forms and carriers. The common diagnostic standard includes complete blood count with analysis of hematological indices, iron deficiency exclusion and examination of hemoglobin fractions. The last and the crucial step is providing molecular-genetic study of HBB gene as the method allowing to verify the diagnosis. The beta-thalassemia pathogenesis, comprehensive genetic classification and various laboratory diagnostics tools are discussed in this review. There exists huge knowledge about beta-thalassemia prevalence in endemic regions but little is known of beta-thalassemia incidence in nonendemic countries, e.g., Russian Federation. Nevertheless, studying beta-thalassemia prevalence in Russia remains relevant considering multi ethnicity of Russian Federation. This review presents the diagnostics algorithm with the use of HBB gene Sanger sequencing and the results of beta-thalassemia prevalence pilot research. According to the data obtained the minimal possible beta-thalassemia incidence in Moscow accounts for 0.16 %.
About the Authors
A. G. KhachaturianRussian Federation
Clinical Resident in Hematology
2 Akkuratova St., S.-Petersburg, 197341
V. D. Nazarov
Russian Federation
Cand. of Sci. (Med.), Clinical Laboratory Diagnostics Doctor, Laboratory Geneticist of the Autoimmune Disease Diagnostics Laboratory
12 Rentgena St., S.-Petersburg, 197022
I. A. Dubina
Russian Federation
Clinical Laboratory Diagnostics Doctor of the Autoimmune Disease Diagnostics Laboratory
12 Rentgena St., S.-Petersburg, 197022
S. V. Lapin
Russian Federation
Cand. of Sci. (Med.), Head of the Laboratory for Diagnostics of Autoimmune Diseases
12 Rentgena St., S.-Petersburg, 197022
D. V. Sidorenko
Russian Federation
Clinical Laboratory Diagnostics Doctor of the Autoimmune Disease Diagnostics Laboratory
12 Rentgena St., S.-Petersburg, 197022
A. A. Vilgelmi
Russian Federation
Acting Head of Saint-Petersburg Laboratory Complex
lit. A, 20 Bolshoy Sampsonievsky Prosp., S.-Petersburg, 194044
M. Yu. Pervakova
Russian Federation
Clinical Laboratory Diagnostics Doctor of the Autoimmune Disease Diagnostics Laboratory
12 Rentgena St., S.-Petersburg, 197022
V. L. Emanuel
Russian Federation
Dr. of Sci. (Med.), Professor, Vice President of the Russian Association of Medical Laboratory Diagnostics, Chief Expert in Clinical Laboratory Diagnostics of Roszdravnadzor for the Northwestern Federal District, Academician of the Russian Metrology Academy, Director
12 Rentgena St., S.-Petersburg, 197022
References
1. GBD 2015. Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602. doi: 10.1016/S0140-6736(16)31678-6.
2. Steinberg M.H., Forget B.G., Higgs D.R., editors. Disorders of Hemoglobin. Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press, 2009. doi: 10.1017/CBO9780511596582.
3. World malaria report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. [Электронный ресурс]. URL: https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2022.pdf?sfvrsn=40bfc53a_4.
4. Fowkes F.J., Allen S.J., Allen A., Alpers M.P., Weatherall D.J., Day K.P. Increased microerythrocyte count in homozygous alpha(+)-thalassaemia contributes to protection against severe malarial anaemia. PLoS Med. 2008;5(3):e56. doi: 10.1371/journal.pmed.0050056.
5. Kountouris P., Kousiappa I., Papasavva T., Christopoulos G., Pavlou E., Petrou M., Feleki X., Karitzie E., Phylactides M., Fanis P., Lederer C.W., Kyrri A.R., Kalogerou E., Makariou C., Ioannou C., Kythreotis L., Hadjilambi G., Andreou N., Pangalou E., Savvidou I., Angastiniotis M., Hadjigavriel M., Sitarou M., Kolnagou A., Kleanthous M., Christou S. The molecular spectrum and distribution of haemoglobinopathies in Cyprus: a 20-year retrospective study. Sci Rep. 2016;6:26371. doi: 10.1038/srep26371.
6. Kattamis A., Forni G.L., Aydinok Y., Viprakasit V. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol. 2020;105(6):692–703. doi: 10.1111/ejh.13512.
7. Canatan D., Delibas S. Report on ten yearsʼ experience of premarital hemoglobinopathy screening at a center in Antalya, Southern Turkey. Hemoglobin. 2016;40:273–6. doi: 10.3109/03630269.2016.1170030.
8. Lai K., Huang G., Su L., He Y. The prevalence of thalassemia in mainland China: evidence from epidemiological surveys. Sci Rep. 2017;7(1):920. doi: 10.1038/s41598-017-00967-2.
9. Bighayeva L.Yu., Kolodey S.V. The primary diagnostics of homozygotic beta-thalassemia in female patient aged 27. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics. 2012;4. (In Russ.)
10. Kościelak J. Prevalence of b-thalassemia minor in Poland. Probl Hig Epidemiol. 2009;90(3):322–4.
11. Smetanina N.S., Finogenova N.A., Lokhmatova M.E. The hemoglobinopathies epidemiology in Moscow. Pediatriya. Zhurnal im. G.N. Speranskogo = Pediatrics. Journal named after G.N. Speransky. 2009;88(4):46–50. (In Russ.)
12. Cappelini M.D., Cohen A., Porter J., editors. Guidelines for the management of transfusion dependent thalassemia, 3rd edition. Cyprus: Thalassemia International Federation, 2014.
13. Lee J.S., Cho S.I., Park S.S., Seong M.W. Molecular basis and diagnosis of thalassemia. Blood Res. 2021;56(S1):S39–43. doi: 10.5045/br.2021.2020332.
14. Ho P.J., Thein S.L. Gene regulation and deregulation: a β globin perspective. Blood Reviews. 2000;14(2):78–93. doi: 10.1054/blre.2000.0128.
15. Thein S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis. 2018;70:54–65. doi: 10.1016/j.bcmd.2017.06.001.
16. Anderson S.C., Poulsen K.B., eds. Andersons’s Atlas of Hematology. Second edition. Wolters Kluwer Health, 2003.
17. Vehapoglu A., Ozgurhan G., Demir A.G., Uzuner S., Nursoy M.A., Turkmen S., Kacan A. Hematological Indices for Differential Diagnosis of Beta Thalassemia Trait and Iron Deficiency Anemia. Anemia. 2014;576738. doi: 10.1155/2014/576738.
18. Bain B.J. Haemoglobinopathy Diagnosis [Internet]. Wiley, 2020. doi: 10.1002/9781119579977.
19. CDC. Hemoglobinopathies: Current Practices for Screening , Confirmation and Follow-up. Assoc Public Heal Lab [Internet]. 2015;5– 57. [Электронный ресурс]. URL: https://www.cdc.gov/ncbddd/sicklecell/documents/nbs_hemoglobinopathy-testing_122015.pdf.
20. Ryan K., Bain B.J., Worthington D., James J., Plews D., Mason A., Roper D., Rees D.C., de la Salle B., Streetly A.; British Committee for Standards in Haematology. Significant haemoglobinopathies: Guidelines for screening and diagnosis. Br J Haematol. 2010;149(1):35–49. doi: 10.1111/j.1365-2141.2009.08054.x.
21. Szuberski J., Oliveira J.L., Hoyer J.D. A comprehensive analysis of hemoglobin variants by high-performance liquid chromatography (HPLC). Int J Lab Hematol. 2012;34(6):594–604. doi: 10.1111/j.1751-553X.2012.01440.x.
22. Hoyer J.D., Scheidt R.M. Identification of Hemoglobin Variants by HPLC. Clin Chem. 2005;51(7):1303–4. doi: 10.1373/clinchem.2005.049577.
23. Riou J., Szuberski J., Godart C., Wajcman H., Oliveira J.L., Hoyer J.D., Bardakdjian-Michau J. Precision of CAPILLARYS 2 for the detection of hemoglobin variants based on their migration positions. Am J Clin Pathol. 2018;149(2):172–80. doi: 10.1093/ajcp/aqx148.
24. Topal Y., Topal H., Ceyhan M.N., Azik F., Çapanoğlu M., Kocabaş C.N. The Prevalence of Hemoglobinopathies in Young Adolescents in the Province of Muğla in Turkey: Results of a Screening Program. Hemoglobin. 2015;39(4):247–50. doi: 10.3109/03630269.2015.1046185.
25. Li D., Liao C., Li J., Xie X., Huang Y., Zhong H., Wei J. Prenatal diagnosis of beta-thalassemia in Southern China. Eur J Obstet Gynecol Reprod Biol. 2006;128(1–2):81–5. doi: 10.1016/j.ejogrb.2005.11.016.
26. Minaidou A., Tamana S., Stephanou C., Xenophontos M., Harteveld C.L., Bento C., Kleanthous M., Kountouris P. A Novel Tool for the Analysis and Detection of Copy Number Variants Associated with Haemoglobinopathies. Int J Mol Sci. 2022;23(24):15920. doi: 10.3390/ijms232415920.
27. Ushkova N.M., Sallah A. Haemoglobimopathies among students of the Peoples’ Friendship University of Russia (PFUR) and observation of a unique case of sickle cell anaemia (patient from Tanzania). Vestnik RUDN = Bulletin RUDN. Series: Medicine. 2008;4:106–8. (In Russ.)
28. Demir A., Yarali N., Fisgin T., Duru F., Kara A. Most reliable indices in differentiation between thalassemia trait and iron deficiency anemia. Pediatr Int. 2002;44(6):612–6. doi: 10.1046/j.1442-200x.2002.01636.x.
Review
For citations:
Khachaturian A.G., Nazarov V.D., Dubina I.A., Lapin S.V., Sidorenko D.V., Vilgelmi A.A., Pervakova M.Yu., Emanuel V.L. The relevance of beta-thalassemia molecular-genetic diagnostics in Russian Federation. Russian Journal of Pediatric Hematology and Oncology. 2024;11(4):89-97. (In Russ.) https://doi.org/10.21682/2311-1267-2024-11-4-89-97