Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

Aspects of radiologic imaging of neuroblastoma in pediatric patients

https://doi.org/10.21682/2311-1267-2024-11-4-104-113

Abstract

Neuroblastoma (NB) is the most “mysterious” tumor in pediatric oncology and predominates in the structure of cancer incidence in young patients. It should be noted that the clinical variability characteristic of this type of tumor is due primarily to its biological properties, which determine the characteristics of manifestation, response to antitumor therapy and prognosis. Today, a risk-adapted approach to the observation and/or treatment of NB using a multimodal strategy, including surgical removal of the tumor, chemotherapy/radiation/immunotherapy, is generally accepted. In addition to the molecular genetic characteristics of the tumor and the patient’s age, the key role of determining the tactics is the disease staging. Despite the fact that diagnostic algorithms are unified, including the use of various imaging methods, the issues of the greatest specificity, accessibility and associated toxicity of modern radionuclide research methods remain debatable. This article presents literature data regarding the diagnostic value of functional diagnostic methods for NB, as well as our own experience of their use in routine clinical practice.

About the Authors

K. M. Golubeva
Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

Pediatric Oncologist of the Department of Chemotherapy of Oncohematological Diseases and Bone Marrow Transplantation for Children

2 Akkuratova St., S.-Petersburg, 197341



Yu. V. Dinikina
Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Head of the Laboratory of Pediatric Neuro-Immuno-Oncology of the Pesonalized Medicine Centre and Head of the Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children

2 Akkuratova St., S.-Petersburg, 197341



D. V. Ryzhkova
Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

Professor of the Russian Academy of Sciences, Dr. of Sci. (Med.), Radiologist of the Highest Category, Chief Researcher of the Research Department of Nuclear Medicine and Theranostics of the Institute of Oncology and Hematology, Head of the Scientific and Clinical Association of Nuclear Medicine, Head of the Department of Nuclear Medicine and Radiation Technologies with a Clinic of the Institute of Medical Education

AuthorID: 424778

ScopusID: 6602541507

2 Akkuratova St., S.-Petersburg, 197341



O. V. Yudina
Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Radiologist of the Highest Category, Head of the Radiology Department

2 Akkuratova St., S.-Petersburg, 197341



References

1. Weinstein J.L., Katzenstein H.M., Cohn S.L. Advances in the diagnosis and treatment of neuroblastoma. Oncologist. 2003;8(3):278–92. doi: 10.1634/theoncologist.8-3-278.

2. Kembhavi S.A., Shah S., Rangarajan V., Qureshi S., Popat P., Kurkure P. Imaging in neuroblastoma: An update. Indian J Radiol Imaging. 2015;25(2):129–36. doi: 10.4103/0971-3026.155844.

3. Simon T., Hero B., Schulte J.H., Deubzer H., Hundsdoerfer P., von Schweinitz D., Fuchs J., Schmidt M., Prasad V., Krug B., Timmermann B., Leuschner I., Fischer M., Langer T., Astrahantseff K., Berthold F., Lode H., Eggert A. 2017 GPOH Guidelines for Diagnosis and Treatment of Patients with Neuroblastic Tumors. Klin Padiatr. 2017;229:147–67. doi: 10.1055/s-0043-103086.

4. Papaioannou G., McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging. 2005;5(1):116–27. doi: 10.1102/1470-7330.2005.0104.

5. Monclair T., Brodeur G.M., Ambros P.F., Brisse H.J., Cecchetto G., Holmes K., Kaneko M., London W.B., Matthay K.K., Nuchtern J.G., von Schweinitz D., Simon T., Cohn S.L., Pearson A.D.; INRG Task Force. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27(2):298–303. doi: 10.1200/JCO.2008.16.6876.

6. Allolio B., Fassnacht M. Clinical review: Adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab. 2006;91(6):2027–37. doi: 10.1210/jc.2005-2639.

7. Clinical guidelines for the treatment of neuroblastoma in children from 04/14/2020. [Electronic resource]: URL: https://cr.minzdrav.gov.ru/schema/78_1. (In Russ.)

8. Ryzhkova D.V., Тikhonova D.N., Grineva E.N. Nuclear medicine technology for diagnosis of neuroendocrine tumors. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology. 2013;6(60):56–63. (In Russ.)

9. Rufini V., Shulkin B. The evolution in the use of MIBG in more than 25 years of experimental and clinical applications. Q J Nucl Med Mol Imaging. 2008;52(4):341–50. PMID: 19088689.

10. Yadgarov M., Kailash C., Shamanskaya T., Kachanov D., Likar Y. Asphericity of tumor [123I]mIBG uptake as a prognostic factor in highrisk neuroblastoma. Pediatr Blood Cancer. 2022;69(11):e29849. doi: 10.1002/pbc.29849.

11. Agrawal A., Rangarajan V., Shah S., Puranik A., Purandare N. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol. 2018;91(1091):20180103. doi: 10.1259/bjr.20180103.

12. Bombardieri E., Giammarile F., Aktolun C., Baum R.P., Bischof Delaloye A., Maffioli L., Moncayo R., Mortelmans L., Pepe G., Reske S.N., Castellani M.R., Chiti A.; European Association for Nuclear Medicine. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2436–46. doi: 10.1007/s00259-010-1545-7.

13. Lopez Quiñones A.J., Vieira L.S., Wang J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab Dispos. 2022;50(9):1218–27. doi: 10.1124/dmd.121.000707.

14. Taïeb D., Timmers H.J., Hindié E., Guillet B.A., Neumann H.P., Walz M.K., Opocher G., de Herder W.W., Boedeker C.C., de Krijger R.R., Chiti A., Al-Nahhas A., Pacak K., Rubello D.; European Association of Nuclear Medicine. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2012;39(12):1977–95. doi: 10.1007/s00259-012-2215-8.

15. Jones J., DeSai C., Chieng R. MIBG. Reference article, Radiopaedia.org (Accessed on 24 Mar 2024). doi: 10.53347/rID-9024.

16. Kogan S.A., Serik T.G., Erdomaeva Ya.A., Kirgizov K.I. Information ballot. Conducting MIBG diagnostics of the child population in the territory of the Russian Federation. ROO NODGO Institute of Management and Translational Medicine of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology and Immunology. [Electronic resource]: URL: https://nodgo.org/sites/default/files/MIBG_512.pdf. (In Russ.)

17. Samim A., Tytgat G.A.M., Bleeker G., Wenker S.T.M., Chatalic K.L.S., Poot A.J., Tolboom N., van Noesel M.M., Lam M.G.E.H., de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med. 2021;11(4):270. doi: 10.3390/jpm11040270.

18. Vik T.A., Pfluger T., Kadota R., Castel V., Tulchinsky M., Farto J.C., Heiba S., Serafini A., Tumeh S., Khutoryansky N., Jacobson A.F. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52(7):784–90. doi: 10.1002/pbc.21932.

19. Kailash A., Likar Yu.N. Advantages and disadvantages of nuclear medicine methods used in diagnostics in patients with neuroblastoma (literature review). Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology. 2016;3(2):50–6. doi: 10.17650/2311-1267-2016-3-2-50-56. (In Russ.)

20. Jacobs A., Delree M., Desprechins B., Otten J., Ferster A., Jonckheer M.H., Mertens J., Ham H.R., Piepsz A. Consolidating the role of 123I-MIBG-scintigraphy in childhood neuroblastoma: five years of clinical experience. Pediatr Radiol. 1990;20(3):157–9. doi: 10.1007/BF02012960.

21. Brisse H.J., McCarville M.B., Granata C., Krug K.B., WoottonGorges S.L., Kanegawa K., Giammarile F., Schmidt M., Shulkin B.L., Matthay K.K., Lewington V.J., Sarnacki S., Hero B., Kaneko M., London W.B., Pearson A.D., Cohn S.L., Monclair T.; International Neuroblastoma Risk Group Project. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261(1):243–57. doi: 10.1148/radiol.11101352.

22. Kaufman R.A., Thrall J.H., Keyes J.W. Jr, Brown M.L., Zakem J.F. False negative bone scans in neuroblastoma metastatic to the ends of long bones. AJR Am J Roentgenol. 1978;130(1):131–5. doi: 10.2214/ajr.130.1.131.

23. Wagner H.N. Jr. A brief history of positron emission tomography (PET). Semin Nucl Med. 1998;28(3):213–20. doi: 10.1016/s0001-2998(98)80027-5.

24. Pauwels E.K., Ribeiro M.J., Stoot J.H., McCready V.R., Bourguignon M., Mazière B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22. doi: 10.1016/s0969-8051(97)00226-6.

25. Rahman W.T., Wale D.J., Viglianti B.L., Townsend D.M., Manganaro M.S., Gross M.D., Wong K.K., Rubello D. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomed Pharmacother. 2019;117:109168. doi: 10.1016/j.biopha.2019.109168.

26. Almuhaideb A., Papathanasiou N., Bomanji J. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 2011;31(1):3–13. doi: 10.4103/0256-4947.75771.

27. Mbakaza O., Vangu M.-D.-T.W. 18F-FDG PET/CT Imaging: Normal Variants, Pitfalls, and Artifacts Musculoskeletal, Infection, and Inflammation. Front Nucl Med. 2022;2:847810. doi: 10.3389/fnume.2022.847810.

28. Pijl J.P., Glaudemans A.W.J.M., Gheysens O., Slart R.H.J.A., Kwee T.C. Importance of Blood Glucose Management Before 18F-FDG PET/CT in 322 Patients with Bacteremia of Unknown Origin. J Nucl Med. 2023;64(8):1287–94. doi: 10.2967/jnumed.122.264839.

29. Surasi D.S., Bhambhvani P., Baldwin J.A., Almodovar S.E., OʼMalley J.P. 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42(1):5–13. doi: 10.2967/jnmt.113.132621.

30. Shammas A., Lim R., Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29(5):1467–86. doi: 10.1148/rg.295085247.

31. Agrawal A., Rangarajan V. Appropriateness criteria of FDG PET/CT in oncology. Indian J Radiol Imaging. 2015;25(2):88–101. doi: 10.4103/0971-3026.155823.

32. Li C., Zhang J., Chen S., Huang S., Wu S., Zhang L., Zhang F., Wang H. Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging. 2018;45(2):306–15. doi: 10.1007/s00259-017-3851-9.

33. Hu R., Zhang Y., Liu S., Lee P., Liu C., Liu A. Prognostic prediction by 18F-FDG-PET/CT parameters in patients with neuroblastoma: a systematic review and meta-analysis. Front Oncol. 2023;13:1208531. doi: 10.3389/fonc.2023.1208531.

34. Lee J.W., Cho A., Yun M., Lee J.D., Lyu C.J., Kang W.J. Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol. 2015;84(12):2633–9. doi: 10.1016/j.ejrad.2015.09.027.

35. Ren J., Fu Z., Zhao Y. Clinical value of 18F-FDG PET/CT to predict MYCN gene, chromosome 1p36 and 11q status in pediatric neuroblastoma and ganglioneuroblastoma. Front Oncol. 2023;13:1099290. doi: 10.3389/fonc.2023.1099290.

36. Li S., Liu J., Wang G., Feng L., Yang X., Kan Y., Wang W., Yang J. Predictive value of 2-deoxy-2-fluorine-18-fluoro-D-glucose positron emission tomography/computed tomography parameters for MYCN amplification in high-risk neuroblastoma. Eur J Radiol. 2024;170:111243. doi: 10.1016/j.ejrad.2023.111243.

37. Piccardo A., Lopci E. Potential role of 18F-DOPA PET in neuroblastoma. Clin Transl Imaging. 2016;4:79–86. doi: 10.1007/s40336-016-0162-2.

38. Piccardo A., Lopci E., Conte M., Garaventa A., Foppiani L., Altrinetti V., Nanni C., Bianchi P., Cistaro A., Sorrentino S., Cabria M., Pession A., Puntoni M., Villavecchia G., Fanti S. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39(1):57–71. doi: 10.1007/s00259-011-1938-2.

39. Samim A., Tytgat G.A.M., Bleeker G., Wenker S.T.M., Chatalic K.L.S., Poot A.J., Tolboom N., van Noesel M.M., Lam M.G.E.H., de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med. 2021;11(4):270. doi: 10.3390/jpm11040270.

40. Pfluger T., Piccardo A. Neuroblastoma: MIBG Imaging and New Tracers. Semin Nucl Med. 2017;47(2):143–57. doi: 10.1053/j.semnuclmed.2016.10.007.

41. Fiebrich H.B., Brouwers A.H., Kerstens M.N., Pijl M.E., Kema I.P., de Jong J.R., Jager P.L., Elsinga P.H., Dierckx R.A., van der Wal J.E., Sluiter W.J., de Vries E.G., Links T.P. 6-[F-18]Fluoro-Ldihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab. 2009;94(10):3922–30. doi: 10.1210/jc.2009-1054.

42. Piccardo A., Treglia G., Fiz F., Bar-Sever Z., Bottoni G., Biassoni L., Borgwardt L., de Keizer B., Jehanno N., Lopci E., Kurch L., Massollo M., Nadel H., Roca Bielsa I., Shulkin B., Vali R., De Palma D., Cecchin D., Santos A.I., Zucchetta P. The evidence-based role of catecholaminergic PET tracers in Neuroblastoma. A systematic review and a head-to-head comparison with mIBG scintigraphy. Eur J Nucl Med Mol Imaging. 2024;51(3):756–67. doi: 10.1007/s00259-023-06486-9.

43. Liu C.J., Lu M.Y., Liu Y.L., Ko C.L., Ko K.Y., Tzen K.Y., Chang H.H., Yang Y.L., Jou S.T., Hsu W.M., Yen R.F. Risk Stratification of Pediatric Patients With Neuroblastoma Using Volumetric Parameters of 18F-FDG and 18F-DOPA PET/CT. Clin Nucl Med. 2017;42(3):e142–8. doi: 10.1097/RLU.0000000000001529.

44. OʼBrien S.R., States L.J., Zhuang H. Neuroblastoma Shown on 18F-DOPA PET/CT Performed to Evaluate Congenital Hyperinsulinism. Clin Nucl Med. 2021;46(11):927–8. doi: 10.1097/RLU.0000000000003689.

45. Bacca A., Chiacchio S., Zampa V., Carrara D., Duce V., Congregati C., Simi P., Taddei S., Materazzi G., Volterrani D., Mariani G., Bernini G. Role of 18F-DOPA PET/CT in diagnosis and follow-up of adrenal and extra-adrenal paragangliomas. Clin Nucl Med. 2014;39(1):14–20. doi: 10.1097/RLU.0000000000000242.

46. Piccardo A., Lopci E., Conte M., Cabria M., Cistaro A., Garaventa A., Villavecchia G. Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG scan. Clin Nucl Med. 2014;39(1):e80–3. doi: 10.1097/RLU.0b013e31827a0002.

47. Piccardo A., Morana G., Puntoni M., Campora S., Sorrentino S., Zucchetta P., Ugolini M., Conte M., Cistaro A., Ferrarazzo G., Pescetto M., Lattuada M., Bottoni G., Garaventa A., Giovanella L., Lopci E. Diagnosis, Treatment Response, and Prognosis: The Role of 18F-DOPA PET/CT in Children Affected by Neuroblastoma in Comparison with 123I-mIBG Scan: The First Prospective Study. J Nucl Med. 2020;61(3):367–74. doi: 10.2967/jnumed.119.232553.

48. Modak S., Mauguen A., Basu E.M., Price A., Behr G., Min R., Lyashchenko S.K., Schwartz J., Pandit-Taskar N. J Clin Oncol. 2023;41(suppl 16; abstr. 10046). doi: 10.1200/JCO.2023.41.16_suppl.10046.6.

49. Wang P., Li T., Liu Z., Jin M., Su Y., Zhang J., Jing H., Zhuang H., Li F. [18F]MFBG PET/CT outperforming [123I]MIBG SPECT/CT in the evaluation of neuroblastoma. Eur J Nucl Med Mol Imaging. 2023;50(10):3097–106. doi: 10.1007/s00259-023-06221-4.

50. Samim A., Blom T., Poot A.J., Windhorst A.D., Fiocco M., Tolboom N., Braat A.J.A.T., Viol S.L.M., van Rooij R., van Noesel M.M., Lam M.G.E.H., Tytgat G.A.M., de Keizer B. [18F]mFBG PET-CT for detection and localisation of neuroblastoma: a prospective pilot study. Eur J Nucl Med Mol Imaging. 2023;50(4):1146–57. doi: 10.1007/s00259-022-06063-6. Erratum in: Eur J Nucl Med Mol Imaging. 2023;50(5):1541.

51. Pandit-Taskar N., Zanzonico P., Staton K.D., Carrasquillo J.A., ReidyLagunes D., Lyashchenko S., Burnazi E., Zhang H., Lewis J.S., Blasberg R., Larson S.M., Weber W.A., Modak S. Biodistribution and Dosimetry of 18F-Meta-Fluorobenzylguanidine: A First-in-Human PET/CT Imaging Study of Patients with Neuroendocrine Malignancies. J Nucl Med. 2018;59(1):147–53. doi: 10.2967/jnumed.117.193169.

52. Sun L., Zhang B., Peng R. Diagnostic Performance of 18F-FDG PET(CT) in Bone-Bone Marrow Involvement in Pediatric Neuroblastoma: A Systemic Review and Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:8125373. doi: 10.1155/2021/8125373.

53. Ouvrard E., Kaseb A., Poterszman N., Porot C., Somme F., Imperiale A. Nuclear medicine imaging for bone metastases assessment: what else besides bone scintigraphy in the era of personalized medicine? Front Med (Lausanne). 2024;10:1320574. doi: 10.3389/fmed.2023.1320574.

54. Wang Y., Xu Y., Kan Y., Wang W., Yang J. Diagnostic Value of Seven Different Imaging Modalities for Patients with Neuroblastic Tumors: A Network Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:5333366. doi: 10.1155/2021/5333366.

55. Melzer H.I., Coppenrath E., Schmid I., Albert M.H., von Schweinitz D., Tudball C., Bartenstein P., Pfluger T. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38(9):1648–58. doi: 10.1007/s00259-011-1843-8.

56. Xia J., Zhang H., Hu Q., Liu S.Y., Zhang L.Q., Zhang A., Zhang X.L., Wang Y.Q., Liu A.G. Comparison of diagnosing and staging accuracy of PET (CT) and MIBG on patients with neuroblastoma: Systemic review and meta-analysis. J Huazhong Univ Sci Technolog Med Sci. 2017;37(5):649–60. doi: 10.1007/s11596-017-1785-x.

57. Chambers G., Frood R., Patel C., Scarsbrook A. 18F-FDG PET-CT in paediatric oncology: established and emerging applications. Br J Radiol. 2019;92(1094):20180584. doi: 10.1259/bjr.20180584.

58. Sharp S.E., Shulkin B.L., Gelfand M.J., Salisbury S., Furman W.L. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43. doi: 10.2967/jnumed.108.060467.

59. Sun L., Zhang B., Peng R. Diagnostic Performance of 18F-FDG PET(CT) in Bone-Bone Marrow Involvement in Pediatric Neuroblastoma: A Systemic Review and Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:8125373. doi: 10.1155/2021/8125373.

60. Masselli G., Casciani E., De Angelis C., Sollaku S., Gualdi G. Clinical application of 18F-DOPA PET/TC in pediatric patients. Am J Nucl Med Mol Imaging. 2021;11(2):64–76. PMID: 34079636.

61. Park J.R., Bagatell R., Cohn S.L., Pearson A.D., Villablanca J.G., Berthold F., Burchill S., Boubaker A., McHugh K., Nuchtern J.G., London W.B., Seibel N.L., Lindwasser O.W., Maris J.M., Brock P., Schleiermacher G., Ladenstein R., Matthay K.K., Valteau-Couanet D. Revisions to the International Neuroblastoma Response Criteria: A Consensus Statement From the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2017;35(22):2580–7. doi: 10.1200/JCO.2016.72.0177.


Review

For citations:


Golubeva K.M., Dinikina Yu.V., Ryzhkova D.V., Yudina O.V. Aspects of radiologic imaging of neuroblastoma in pediatric patients. Russian Journal of Pediatric Hematology and Oncology. 2024;11(4):104-113. (In Russ.) https://doi.org/10.21682/2311-1267-2024-11-4-104-113

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X