Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

The features of the diagnosis and treatment of essential thrombocythemia in children

https://doi.org/10.21682/2311-1267-2025-12-2-82-89

Abstract

Essential thrombocythemia (ET) is a type of myeloproliferative neoplasm with uncontrolled production of megakaryocytes. It is characterized by the presence of large and giant megakaryocytes in the bone marrow, which leads to an increase in platelet count. This condition can cause both thrombosis and bleeding. In children, the clinical presentation of ET can vary. Unlike adults, who often experience hemorrhagic and thrombotic events, most pediatric patients do not have any symptoms. Instead, they may only have changes in their blood count. The diagnostic criteria and risk factors for ET in adults are not directly applicable to children. Similarly, the treatment recommendations for adults with ET cannot be directly applied to children. The genetic profile of ET in children also differs from that in adults, leading to differences in the frequency of specific driver mutations and the number of cases of the disease.

The aim of this study is to describe the clinical and laboratory features, course, and treatment of ET in children and adolescents.

About the Authors

P. V. Kralichkin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Pediatric Oncologist of the Hospital for Short-Term Treatment at Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia.

1 Samory Mashela St., Moscow, 117997



A. V. Pshonkin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Associate Professor of the Higher Attestation Commission, Hematologist, Pediatric Oncologist, Head of the Hospital for Short-Term Treatment at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia.

1 Samory Mashela St., Moscow, 117997



P. A. Zharkov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Dr. of Sci. (Med.), Associate Professor of the Higher Attestation Commission, Pediatrician, Hematologist Outpatient Consultative Unit, Head of the Hemostasis Pathology Department at Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia, Web of Science ResearcherID: AAP-9203-2020.

1 Samory Mashela St., Moscow, 117997



G. A. Novichkova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Dr. of Sci. (Med.), Professor, Scientific Director at Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia, Chief Freelance Pediatric Oncologist and Hematologist of the Ministry of Health of Russia.

1 Samory Mashela St., Moscow, 117997



References

1. Melikyan A.L., Kovrigina A.M., Subortseva I.N., Shuvaev V.A., Afanasyev B.V., Ageeva T.A., Baikov V.V., Vinogradova O.Yu., Golenkov A.K., Gritsaev S.V., Zaritskey A.Yu., Kaplanov K.D., Lomaia E.G., Martynkevich I.S., Morozova E.V., Pospelova T.I., Sokolova M.A., Sudarikov A.B., Turkina A.G., Shatokhin Yu.V., Savchenko V.G. National Clinical Guidelines on Diagnosis and Treatment of PhNegative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2018). Gematologiya i transfuziologiya = Hematology and Transfusiology. 2018;63(3):275–315. (In Russ.). doi: 10.25837/HAT.2019.51.88.001.

2. Thiele J., Kvasnicka H.M., Orazi A., Gianelli U., Gangat N., Vannucchi A.M., Barbui T., Arber D.A., Tefferi A. The international consensus classification of myeloid neoplasms and acute leukemias: Myeloproliferative neoplasms. Am J Hematol. 2023;98(3):544–5. doi: 10.1002/ajh.26821.

3. Arber D.A., Orazi A., Hasserjian R.P., Borowitz M.J., Calvo K.R., Kvasnicka H.-M., Wang S.A., Bagg A., Barbui T., Branford S., Bueso Ramos C.E., Cortes J.E., Dal Cin P., DiNardo C.D., Dombret H., Duncavage E.J., Ebert B.L., Estey E.H., Facchetti F., Foucar K., Gangat N., Gianelli U., Godley L.A., Gökbuget N., Gotlib J., HellströmLindberg E., Hobbs G.S., Hoffman R., Jabbour E.J., Kiladjian J.-J., Larson R.A., Le Beau M.M., Loh M.L.-C., Löwenberg B., Macintyre E., Malcovati L., Mullighan C.G., Niemeyer C., Odenike O.M., Ogawa S., Orfao A., Papaemmanuil E., Passamonti F., Porkka K., Pui C.-H., Radich J.P., Reiter A., Rozman M., Rudelius M., Savona M.R., Schiffer C.A., Schmitt-Graeff A., Shimamura A., Sierra J., Stock W.A., Stone R.M., Tallman M.S., Thiele J., Tien H.-F., Tzankov A., Vannucchi A.M., Vyas P., Wei A.H., Weinberg O.K., Wierzbowska A., Cazzola M., Döhner H., Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–28. doi: 10.1182/blood.2022015850.

4. Barosi G., Mesa R.A., Thiele J., Cervantes F., Campbell P.J., Verstovsek S., Dupriez B., Levine R.L., Passamonti F., Gotlib J., Reilly J.T., Vannucchi A.M., Hanson C.A., Solberg L.A., Orazi A., Tefferi A. Proposed criteria for the diagnosis of post-polycythemia vera and postessential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22(2):437–8. doi: 10.1038/sj.leu.2404914.

5. Orazi A., Hasserjian R.P., Cazzola M., Döhner H., Tefferi A., Arber D.A. International Consensus Classification for myeloid neoplasms at-a-glance. Am J Hematol. 2023;98:6–10. doi: 10.1002/ajh.26772.

6. Titmarsh G.J., Duncombe A.S., Mcmullin M.F., Rorke M.O., Mesa R., Vocht F.D., Horan S., Fritschi L., Clarke M., Anderson L.A. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 2014;90(9):1–7. doi: 10.1002/ajh.23690.

7. Tefferi A., Vannucchi A.M., Barbui T. Essential thrombocythemia: 2024 update on diagnosis, risk stratification, and management. Am J Hematol. 2024;99:697–718. doi: 10.1002/ajh.27216.

8. Fu R., Zhang L., Yang R. Paediatric essential thrombocythaemia: clinical and molecular features, diagnosis and treatment. Br J Haematol. 2013;163:295–302. doi: 10.1111/bjh.12530.

9. Levine R.L., Wadleigh M., Cools J., Ebert B.L., Wernig G., Huntly B.J.P., Boggon T.J., Wlodarska I., Clark J.J., Moore S., Adelsperger J., Koo S., Lee J.C., Gabriel S., Mercher T., D’Andrea A., Fröhling S., Döhner K., Marynen P., Vandenberghe P., Mesa R.A., Tefferi A., Griffin J.D., Eck M.J., Sellers W.R., Meyerson M., Golub T.R., Lee S.J., Gilliland D.G. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.

10. James C., Ugo V., Le Couédic J.-P., Staerk J., Delhommeau F., Lacout C., Garçon L., Raslova H., Berger R., Bennaceur-Griscelli A., Villeval J.L., Constantinescu S.N., Casadevall N., Vainchenker W. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.

11. Kralovics R., Passamonti F., Buser A.S., Teo S.-S., Tiedt R., Passweg J.R., Tichelli A., Cazzola M., Skoda R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/NEJMoa051113.

12. Baxter E.J., Scott L.M., Campbell P.J., East C., Fourouclas N., Swanton S., Vassiliou G.S., Bench A.J., Boyd E.M., Curtin N., Scott M.A., Erber W.N., Green A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. (London, England) 2005;365(9464):1054–61. doi: 10.1016/S0140-6736(05)71142-9.

13. Scott L.M., Tong W., Levine R.L., Scott M.A., Beer P.A., Stratton M.R., Futreal P.A., Erber W.N., McMullin M.F., Harrison C.N., Warren A.J., Gilliland D.G., Lodish H.F., Green A.R. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/NEJMoa065202.

14. Klampfl T., Gisslinger H., Harutyunyan A.S., Nivarthi H., Rumi E., Milosevic J.D., Them N.C.C., Berg T., Gisslinger B., Pietra D., Chen D., Vladimer G.I., Bagienski K., Milanesi C., Casetti I.C., Sant’Antonio E., Ferretti V., Elena C., Schischlik F., Cleary C., Six M., Schalling M., Schönegger A., Bock C., Malcovati L., Pascutto C., Superti-Furga G., Cazzola M., Kralovics R. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

15. Nangalia J., Massie C.E., Baxter E.J., Nice F.L., Gundem G., Wedge D.C., Avezov E., Li J., Kollmann K., Kent D.G., Aziz A., Godfrey A.L., Hinton J., Martincorena I., Van Loo P., Jones A.V., Guglielmelli P., Tarpey P., Harding H.P., Fitzpatrick J.D., Goudie C.T., Ortmann C.A., Loughran S.J., Raine K., Jones D.R., Butler A.P., Teague J.W., O’Meara S., McLaren S., Bianchi M., Silber Y., Dimitropoulou D., Bloxham D., Mudie L., Maddison M., Robinson B., Keohane C., Maclean C., Hill K., Orchard K., Tauro S., Du M.-Q., Greaves M., Bowen D., Huntly B.J.P., Harrison C.N., Cross N.C.P., Ron D., Vannucchi A.M., Papaemmanuil E., Campbell P.J., Green A.R. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.

16. Pikman Y., Lee B.H., Mercher T., McDowell E., Ebert B.L., Gozo M., Cuker A., Wernig G., Moore S., Galinsky I., DeAngelo D.J., Clark J.J., Lee S.J., Golub T.R., Wadleigh M., Gilliland D.G., Levine R.L. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.

17. Pardanani A., Lasho T.L., Finke C., Hanson C.A., Tefferi A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2 V617F-negative polycythemia vera. Leukemia. 2007;21(9):1960–3. doi: 10.1038/sj.leu.2404810.

18. Tefferi A., Guglielmelli P., Larson D.R., Finke C., Wassie E.A., Pieri L., Gangat N., Fjerza R., Belachew A.A., Lasho T.L., Ketterling R.P., Hanson C.A., Rambaldi A., Finazzi G., Thiele J., Barbui T., Pardanani A., Vannucchi A.M. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507–13. doi: 10.1182/blood-2014-05-579136.

19. Pardanani A., Lasho T.L., Finke C.M., Tefferi A. Infrequent occurrence of MPL exon 10 mutations in polycythemia vera and post-polycythemia vera myelofibrosis. Am J Hematol. 2011;86(8):701–2. doi: 10.1002/ajh.22058.

20. Broséus J., Park J.-H., Carillo S., Hermouet S., Girodon F. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6. doi: 10.1182/blood-2014-06-583161.

21. Tefferi A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am J Hematol. 2016;91(1):50–8. doi: 10.1002/ajh.24221.

22. Sobas M., Kiladjian J.-J., Beauverd Y., Curto-Garcia N., Sadjadian P., Shih L.Y., Devos T., Krochmalczyk D., Galli S., Bieniaszewska M., Seferynska I., McMullin M.F., Armatys A., Spalek A., Waclaw J., Zdrenghea M., Legros L., Girodon F., Lewandowski K., Angona Figueras A., Samuelsson J., Abuin Blanco A., Cony-Makhoul P., Collins A., James C., Kusec R., Lauermannova M., Noya M.S., Skowronek M., Szukalski L., Szmigielska-Kaplon A., Wondergem M., Dudchenko I., Gora Tybor J., Laribi K., Kulikowska de Nalecz A., Demory J.-L., Le Du K., Zweegman S., Besses Raebel C., Skoda R., Giraudier S., Griesshammer M., Harrison C.N., Ianotto J.-C. Real-world study of children and young adults with myeloproliferative neoplasms: identifying risks and unmet needs. Blood Adv. 2022;6(17):5171–83. doi: 10.1182/bloodadvances.2022007201.

23. Vainchenker W., Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79. doi: 10.1182/blood-2016-10-695940.

24. Dupont S., Massé A., James C., Teyssandier I., Lécluse Y., Larbret F., Ugo V., Saulnier P., Koscielny S., Le Couédic J.P., Casadevall N., Vainchenker W., Delhommeau F. The JAK2617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood. 2007;110(3):1013–21. doi: 10.1182/blood-2006-10-054940.

25. Constantinescu S.N., Vainchenker W., Levy G., Papadopoulos N. Functional Consequences of Mutations in Myeloproliferative Neoplasms. HemaSphere. 2021;5(6):e578. doi: 10.1097/HS9.0000000000000578.

26. Pecquet C., Papadopoulos N., Balligand T., Chachoua I., Tisserand A., Vertenoeil G., Nédélec A., Vertommen D., Roy A., Marty C., Nivarthi H., Defour J.-P., El-Khoury M., Hug E., Majoros A., Xu E., Zagrijtschuk O., Fertig T.E., Marta D.S., Gisslinger H., Gisslinger B., Schalling M., Casetti I., Rumi E., Pietra D., Cavalloni C., Arcaini L., Cazzola M., Komatsu N., Kihara Y., Sunami Y., Edahiro Y., Araki M., Lesyk R., Buxhofer-Ausch V., Heibl S., Pasquier F., Havelange V., Plo I., Vainchenker W., Kralovics R., Constantinescu S.N. Secreted mutant calreticulins as rogue cytokines in myeloproliferative neoplasms. Blood. 2023;141(8):917–29. doi: 10.1182/blood.2022016846.

27. Balligand T., Achouri Y., Pecquet C., Gaudray G., Colau D., Hug E., Rahmani Y., Stroobant V., Plo I., Vainchenker W., Kralovics R., Van den Eynde B.J., Defour J.-P., Constantinescu S.N. Knock-in of murine CALR del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of CALR exon 9 in cardiac development. Leukemia. 2020;34(2):510–21. doi: 10.1038/s41375-019-0538-1.

28. Vainchenker W., Constantinescu S.N. JAK/STAT signaling in hematological malignancies. Oncogene. 2013;32(21):2601–13. doi: 10.1038/onc.2012.347.

29. Benlabiod C., Cacemiro M. da C., Nédélec A., Edmond V., Muller D., Rameau P., Touchard L., Gonin P., Constantinescu S.N., Raslova H., Villeval J.-L., Vainchenker W., Plo I., Marty C. Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nat Commun. 2020;11(1):4886. doi: 10.1038/s41467-020-18691-3.

30. Toppaldoddi K.R., da Costa Cacemiro M., Bluteau O., PanneauSchmaltz B., Pioch A., Muller D., Villeval J.-L., Raslova H., Constantinescu S.N., Plo I., Vainchenker W., Marty C. Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene. 2019;38(10):1651–60. doi: 10.1038/s41388-018-0538-z.

31. Tiedt R., Hao-Shen H., Sobas M.A., Looser R., Dirnhofer S., Schwaller J., Skoda R.C. Ratio of mutant JAK2-V617F to wild-type JAK2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111(8):3931–40. doi: 10.1182/blood-2007-08-107748.

32. Prick J., de Haan G., Green A.R., Kent D.G. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Exp Hematol. 2014;42(10):841–51. doi: 10.1016/j.exphem.2014.07.268.

33. Li J., Kent D.G., Godfrey A.L., Manning H., Nangalia J., Aziz A., Chen E., Saeb-Parsy K., Fink J., Sneade R., Hamilton T.L., Pask D.C., Silber Y., Zhao X., Ghevaert C., Liu P., Green A.R. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood. 2014;123(20):3139–51. doi: 10.1182/blood-2013-06-510222.

34. Chen E., Beer P.A., Godfrey A.L., Ortmann C.A., Li J., Costa-Pereira A.P., Ingle C.E., Dermitzakis E.T., Campbell P.J., Green A.R. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 2010;18(5):524–35. doi: 10.1016/j.ccr.2010.10.013.

35. Rampal R., Ahn J., Abdel-Wahab O., Nahas M., Wang K., Lipson D., Otto G.A., Yelensky R., Hricik T., McKenney A.S., Chiosis G., Chung Y.R., Pandey S., van den Brink M.R.M., Armstrong S.A., Dogan A., Intlekofer A., Manshouri T., Park C.Y., Verstovsek S., Rapaport F., Stephens P.J., Miller V.A., Levine R.L. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111(50):e5401–10. doi: 10.1073/pnas.1407792111.

36. Chen E., Schneider R.K., Breyfogle L.J., Rosen E.A., Poveromo L., Elf S., Ko A., Brumme K., Levine R., Ebert B.L., Mullally A. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood. 2015;125(2):327–35. doi: 10.1182/blood-2014-04-567024.

37. Tefferi A., Pardanani A. Essential Thrombocythemia. N Engl J Med. 2019;381(22):2135–44. doi: 10.1056/NEJMcp1816082.

38. Barbui T., Thiele J., Passamonti F., Rumi E., Boveri E., Ruggeri M., Rodeghiero F., d’Amore E.S.G., Randi M.L., Bertozzi I., Marino F., Vannucchi A.M., Antonioli E., Carrai V., Gisslinger H., BuxhoferAusch V., Müllauer L., Carobbio A., Gianatti A., Gangat N., Hanson C.A., Tefferi A. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29(23):3179–84. doi: 10.1200/JCO.2010.34.5298.

39. Tarakanova A.V., Abramov D.S., Pshonkin A.V., Konovalov D.M. Pathomorphological diagnosis of Ph-negative chronic myeloproliferative neoplasms in children. Voprosy gematologii/oncologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology. 2024;23(3):123–9. (In Russ.). doi: 10.24287/1726-1708-2024-23-3-123-129.

40. Szuber N., Vallapureddy R.R., Penna D., Lasho T.L., Finke C., Hanson C.A., Ketterling R.P., Pardanani A., Gangat N., Tefferi A. Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol. 2018;93(12):1474–84. doi: 10.1002/ajh.25270.

41. Passamonti F., Thiele J., Girodon F., Rumi E., Carobbio A., Gisslinger H., Kvasnicka H.M., Ruggeri M., Randi M.L., Gangat N., Vannucchi A.M., Gianatti A., Gisslinger B., Müllauer L., Rodeghiero F., d’Amore E.S.G., Bertozzi I., Hanson C.A., Boveri E., Marino F., Maffioli M., Caramazza D., Antonioli E., Carrai V., Buxhofer-Ausch V., Pascutto C., Cazzola M., Barbui T., Tefferi A. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood. 2012;120(6):1197–201. doi: 10.1182/blood-2012-01-403279.

42. Barbui T., Vannucchi A.M., Buxhofer-Ausch V., De Stefano V., Betti S., Rambaldi A., Rumi E., Ruggeri M., Rodeghiero F., Randi M.L., Bertozzi I., Gisslinger H., Finazzi G., Carobbio A., Thiele J., Passamonti F., Falcone C., Tefferi A. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5:e369. doi: 10.1038/bcj.2015.94.

43. van Genderen P.J., van Vliet H.H., Prins F.J., van de Moesdijk D., van Strik R., Zijlstra F.J., Budde U., Michiels J.J. Excessive prolongation of the bleeding time by aspirin in essential thrombocythemia is related to a decrease of large von Willebrand factor multimers in plasma. Ann Hematol. 1997;75(5–6):215–20. doi: 10.1007/s002770050345.

44. Kubo M., Sakai K., Hayakawa M., Kashiwagi H., Yagi H., Seki Y., Hasegawa A., Tanaka H., Amano I., Tomiyama Y., Matsumoto M. Increased cleavage of von Willebrand factor by ADAMTS13 may contribute strongly to acquired von Willebrand syndrome development in patients with essential thrombocythemia. J Thromb Haemost. 2022;20(7):1589–98. doi: 10.1111/jth.15717.

45. Lancellotti S., Dragani A., Ranalli P., Petrucci G., Basso M., Tartaglione R., Rocca B., De Cristofaro R. Qualitative and quantitative modifications of von Willebrand factor in patients with essential thrombocythemia and controlled platelet count. J Thromb Haemost. 2015;13(7):1226–37. doi: 10.1111/jth.12967.

46. Janjetovic S., Rolling C.C., Budde U., Schneppenhem S., Schafhausen P., Peters M.C., Bokemeyer C., Holstein K., Langer F. Evaluation of different diagnostic tools for detection of acquired von Willebrand syndrome in patients with polycythemia vera or essential thrombocythemia. Thromb Res. 2022;218:35–43. doi: 10.1016/j.thromres.2022.08.002.

47. Mascarenhas J., Kosiorek H.E., Prchal J.T., Rambaldi A., Berenzon D., Yacoub A., Harrison C.N., McMullin M.F., Vannucchi A.M., Ewing J., O’Connell C.L., Kiladjian J.-J., Mead A.J., Winton E.F., Leibowitz D.S., De Stefano V., Arcasoy M.O., Kessler C.M., Catchatourian R., Rondelli D., Silver R.T., Bacigalupo A., Nagler A., Kremyanskaya M., Levine M.F., Arango Ossa J.E., McGovern E., Sandy L., Salama M.E., Najfeld V., Tripodi J., Farnoud N., Penson A.V., Weinberg R.S., Price L., Goldberg J.D., Barbui T., Marchioli R., Tognoni G., Rampal R.K., Mesa R.A., Dueck A.C., Hoffman R. A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139(19):2931–41. doi: 10.1182/blood.2021012743.

48. Putti M.C., Bertozzi I., Randi M.L. Essential Thrombocythemia in Children and Adolescents. Cancers (Basel). 2021;13(6147):1–14. doi: 10.3390/cancers13236147.

49. Monagle P., Cuello C.A., Augustine C., Bonduel M., Brandão L.R., Capman T., Chan A.K.C., Hanson S., Male C., Meerpohl J., Newall F., O’Brien S.H., Raffini L., van Ommen H., Wiernikowski J., Williams S., Bhatt M., Riva J.J., Roldan Y., Schwab N., Mustafa R.A., Vesely S.K. American Society of Hematology 2018 Guidelines for management of venous thromboembolism: treatment of pediatric venous thromboembolism. Blood Adv. 2018;2(22):3292–316. doi: 10.1182/bloodadvances.2018024786.


Review

For citations:


Kralichkin P.V., Pshonkin A.V., Zharkov P.A., Novichkova G.A. The features of the diagnosis and treatment of essential thrombocythemia in children. Russian Journal of Pediatric Hematology and Oncology. 2025;12(2):82-89. (In Russ.) https://doi.org/10.21682/2311-1267-2025-12-2-82-89

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X