Преимущества и недостатки методов ядерной медицины, используемых при диагностике у пациентов с нейробластомой (обзор литературы)
https://doi.org/10.17650/2311-1267-2016-3-2-50-56
Аннотация
На момент постановки диагноза приблизительно у 50 % пациентов с нейробластомой (НБ) определяется распространенная форма заболевания. Поэтому правильное стадирование с использованием методов лучевой диагностики и ядерной медицины имеет важнейшее значение у таких больных. Метайодбензилгуанидин (МЙБГ) является аналогом норадреналина и это идеальный туморотропный препарат для визуализации опухолевых клеток, экспрессирующих переносчики норадреналина. К основным недостаткам сцинтиграфии с МЙБГ следует отнести ограниченное пространственное разрешение, низкую чувствительность при диагностике опухолей малых размеров, существование НБ, клетки которых не накапливают МЙБГ, длительность исследования и необходимость выполнения нескольких протоколов сканирования. Позитронно-эмиссионная томография с соответствующим радиофармпрепаратом может стать хорошей альтернативой сцинтиграфии с МЙБГ и помочь при сомнительных и противоречивых результатах.
Ключевые слова
Об авторах
А. КайлашРоссия
117997, Москва, ул. Саморы Машела, 1
Ю. Н. Ликарь
Россия
117997, Москва, ул. Саморы Машела, 1
Список литературы
1. Spix C., Aareleid T., Stiller C. et al. Survival of children with neuroblastoma time trends and regional differences in Europe, 1978–1992. Eur J Cancer 2001;37:722–9.
2. Heck J.E., Ritz B., Hung R.J. et al. The epidemiology of neuroblastoma: a review. Paediat Perinat Epidemiol 2009;23:125–43.
3. DuBois S., Kalika Y., Lukens J. et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol 1999;21:181–9.
4. Brisse H.J., McCarville M.B., Granata S. et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 2011;261:243–57.
5. Mueller W.P., Coppenrath E., Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol 2013;43:418–27.
6. Mehta K., Haller J.O., Legasto A.C. Imaging neuroblastoma in children. Crit Rev Comput Tomogr 2003;44(1):47–61.
7. Pfluger T., Schmied C., Porn U. et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. Am J Roentgenol 2003;181:1115–24.
8. Shulkin B.L., Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med 1998;39:679–88.
9. Dumba M., Jawad N., McHugh K. Neuroblastoma and nephroblastoma: a radiological review. Cancer Imaging 2015;15:5.
10. Wieland D.M., Wu J.L., Brown L.E. et al. Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with 131Iiodobenzylguanidine. J Nucl Med 1980;21:349–53.
11. Wieland D.M., Brown L.E., Tobes M.C. et al. Imaging the primate adrenal medulla with [123I] and [131I] metaiodobenzylguanidine: concise communication. J Nucl Med 1981;22:358–64.
12. Guilloteau D., Chalon S., Beulieu J.L. et al. Comparison of MIBG and monoamines uptake mechanism: pharmacological animal and blood platelets studies. Eur J Nucl Med 1988;14:341–4.
13. Smets L.A., Loesberg C., Janssen M. et al. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res 1989;49:2941–4.
14. Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 2001;91:35–62.
15. Vik T.A., Pfluger T., Kadota R. et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer 2009;52:784–90.
16. Sharp S.E., Gelfand M.J., Shulkin B.L. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 2011;41:345–53.
17. Jacobson A.F., Deng H., Lombard J. et al. 123I-metaiodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a metaanalysis. J Clin Endocrinol Metab 2010;95:2596–606.
18. Shapr S.E., Trout A.T., Weiss B.D., Gelfand M.J. MIBG in Neuroblastoma Diagnostic Imaging and Therapy. Radiographics 2016;36(1):258–78.
19. Solanki K.K., Bomanji J., Moyes J. et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled metaiodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21.
20. Hadj-Djilani N.L., Lebtahi N.E., Delaloye A.B. et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nuc Med 1995;22:322–9.
21. Fendler W.P., Melzer H.I., Walz C. et al. High 123I-MIBG uptake in neuroblastic tumours indicates unfavourable histopathology. Eur J Nucl Med Mol Imaging 2013;40(11):1701–10.
22. Maurea S., Lastoria S., Caracò C. et al. Iodine-131-MIBG imaging to monitor chemotherapy response in advanced neuroblastoma: comparison with laboratory analysis. J Nucl Med 1994;35(9):1429–35.
23. Biasotti S., Garaventa A., Villavecchia G.P. et al. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol 2000;35(2):153–5.
24. Bonnin F., Lumbroso J., Tenenbaum F. et al. Refining interpretation of MIBG scans in children. J Nucl Med 1994;35:803–10.
25. McGarvey C.K., Applegate K., Lee N.D. et al. False-positive metaiodobenzylguanidine scan for neuroblastoma in a child with opsoclonus-myoclonus syndrome treated with adrenocorticotropic hormone. J Child Neurol 2006;21:606–10.
26. http://eanm.org/publications/guidelines/ gl_paed_mibg.pdf.
27. http://eanm.org/publications/guidelines/ gl_onco_mibg_1.pdf.
28. Lebtahi N., Gudinchet F., Nenadov-Beck M. et al. Evaluating bone marrow metastasis of neuroblastoma with iodine-123-MIBG scintigraphy and MRI. J Nucl Med 1997;38:1389–92.
29. Rozovsky K., Koplewitz B.Z., Krausz Y. et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. Am J Roentgenol 2008;190(4):1085–90.
30. Dessner D.A., DiPietro M.A., Shulkin B.L. et al. MIBG detection of hepatic neuroblastoma: correlation with CT, US and surgical findings. Pediatr Radiol 1993;23(4):276–80.
31. Matthay K.K., Shulkin B., Ladenstein R. et al. Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer 2010;102(9):1319–26.
32. Decarolis B., Schneider C., Hero B. et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study. J Clin Oncol 2013;31(7):944–51.
33. Shulkin B.L., Hutchinson R.J., Castle V.P. et al. Neuroblastoma: Positron emission tomography with 2-[fluorine-18]-fluoro-2- deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199:743–50.
34. Sharp S.E., Shulkin B.L., Gelfand M.J. et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009;50:1237–43.
35. Taggart D.R., Han M.M., Quach A. et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 2009;27:5343–9.
36. Papathanasiou N.D., Gaze M.N., Sullivan K. et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 2011;52:519–25.
37. Kushner B.H. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–88.
38. Colavolpe C., Guedj E., Cammilleri S. et al. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBGnegative. Pediatr Blood Cancer 2008;51:828–31.
39. Mc Dowell H., Losty P., Barnes N., Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG negative. Pediatr Blood Cancer 2009;52:552.
40. Kushner B.H., Kramer K., Modak S. et al. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol 2009;27:1041–6.
41. Schwarz K.B., Driver I., Lewis I.J. et al. Positive MIBG scanning at the time of relapse in neuroblastoma which was MIBG negative at diagnosis. Br J Radiol 1997;70:90–2.
42. Kushner B.H., Yeung H.W., Larson S.M. et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: Fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;219:3397–405.
43. Melzer H.I., Coppenrath E., Schmid I. et al. (123)I-MIBG scintigraphy/SPECT versus (18)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 2011;38:1648–58.
44. Bleeker G., Tytgat G.A., Adam J.A. et al. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev 2015;29(9):CD009263.
45. Reubi J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003;24:389–427.
46. Kroiss A., Putzer D., Uprimny C. et.al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3- octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging 2011;38:865–73.
47. Schilling F.H., Bihl H., Jacobsson H. et al. Combined (111)In-pentetreotide scintigraphy and (123)I-mIBG scintigraphy in neuroblastoma provides prognostic information. Med Pediatr Oncol 2000;35:688–91.
48. Joshi P., Lele V. Somatostatin receptor positron emission tomography/computed tomography (PET/CT) in the evaluation of opsoclonus-myoclonus ataxia syndrome. Indian J Nucl Med 2013;28(2):108–11.
49. Gains J.E., Bomanji J.B., Fersht N.L. et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 2011;52:1041–7.
50. Rosenspire K.C., Haka M.S., Van Dort M.E. et al. Synthesis and preliminary evaluation of [11C]metahydroxyephedrine: a false neurotransmitter agent for heart neuronal imaging. J Nucl Med 1990;31:1328–34.
51. Shulkin B.L., Wieland D.M., Baro M.E. et al. PET Hydroxyephedrine Imaging of Neuroblastoma. J Nucl Med 1996;37:16–21.
52. Franzius C., Hermann K., Weckesser M. et al. Whole-body PET/CT with 11C metahydrox- yephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med 2006;47:1635–42.
53. Lopci E., Chiti A., Castellani M.R. et al. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 2011;38:S28–40.
54. Lee C.L., Wahnishe H., Sayre G.A. et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 2010;37:4861–6.
55. LaBrosse E.H., Comoy E., Bohuon C. et al. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst 1976;57:633–8.
56. Koopmans K.P., de Vries E.G., Kema I.P. et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 2006;7:728–34.
57. Jager P.L., Chirakal R., Marriott C.J. et al. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 2008;49:573–86. 58. Minn H., Kauhanen S., Seppänen M. et al. 18F-FDOPA: a multiple-target molecule. J Nucl Med 2009;50:1915–8.
58. Timmers H.J., Chen C.C., Carrasquillo J.A. et al. Comparison of 18F-fluoro-LDOPA, 18F-fluorodeoxy glucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:4757–67.
59. Fiebrich H.B., Brouwers A.H., Kerstens M.N. et al. 6-[F-18]Fluoro-Ldihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)Imetaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009;94:3922–30.
60. Kauhanen S., Seppanen M., Ovaska J. et al. The clinical value of [18F]fluoro dihydroxyphenilalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer 2009;16:255–65.
61. Piccardo A., Lopci E., Conte M. et al. Comparison of (18)F-dopa PET/CT and (123)I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 2012;39:57–61.
62. Piccardo A., Lopci E., Conte M. et al. Bone and lymph-node metastases from Neuroblastoma detected by 18F-DOPA-PET/ CT and confirmed by post-therapy 131I-MIBG, but negative on diagnostic 123I-MIBG scan. Clin Nucl Med 2014;39(1):e80–3.
63. Lopci E., Piccardo A., Nanni C. et al. 18F-DOPA PET/CT in neuroblastoma: comparison with conventional imaging with CT/MR. Clin Nucl Med 2012;37:e73–8.
Рецензия
Для цитирования:
Кайлаш А., Ликарь Ю.Н. Преимущества и недостатки методов ядерной медицины, используемых при диагностике у пациентов с нейробластомой (обзор литературы). Российский журнал детской гематологии и онкологии (РЖДГиО). 2016;3(2):50-56. https://doi.org/10.17650/2311-1267-2016-3-2-50-56
For citation:
Kailash A., Likar Yu.N. Advantages and disadvantages of nuclear medicine techniques used in the diagnosis of patients with neuroblastoma (a review). Russian Journal of Pediatric Hematology and Oncology. 2016;3(2):50-56. (In Russ.) https://doi.org/10.17650/2311-1267-2016-3-2-50-56