Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

Advantages and disadvantages of nuclear medicine techniques used in the diagnosis of patients with neuroblastoma (a review)

https://doi.org/10.17650/2311-1267-2016-3-2-50-56

Abstract

About the 50 % of patients with neuroblastoma (NB) suffered from generalized form of disease at the moment of diagnosis establishing. So, the correct staging with the usage of methods of radiation diagnosis and nuclear medicine is very important in this setting. Meta-iodobenzyl guanidine (MIBG) is an analogue of noradrenalin so this is the ideal tumortropic drug for visualization of cells expresses carriers of noradrenalin. Main problems of method of MIBG scintigraphy are the limited spatial resolution, low sensitivity during the diagnosis of small-sized tumours, presence of NB without MIBG accumulation, duration of scanning and necessity of several scanning protocols. Positron-emission tomography with consequent radiopharmaceuticals can be good alternative way in comparison with routine scintigraphy with MIBG to help in case of doubtful and contradictory results.

About the Authors

A. Kailash
Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia
Russian Federation

1 Samory Mashela St., Moscow, 117997



Yu. N. Likar
Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia
Russian Federation

1 Samory Mashela St., Moscow, 117997



References

1. Spix C., Aareleid T., Stiller C. et al. Survival of children with neuroblastoma time trends and regional differences in Europe, 1978–1992. Eur J Cancer 2001;37:722–9.

2. Heck J.E., Ritz B., Hung R.J. et al. The epidemiology of neuroblastoma: a review. Paediat Perinat Epidemiol 2009;23:125–43.

3. DuBois S., Kalika Y., Lukens J. et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol 1999;21:181–9.

4. Brisse H.J., McCarville M.B., Granata S. et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 2011;261:243–57.

5. Mueller W.P., Coppenrath E., Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol 2013;43:418–27.

6. Mehta K., Haller J.O., Legasto A.C. Imaging neuroblastoma in children. Crit Rev Comput Tomogr 2003;44(1):47–61.

7. Pfluger T., Schmied C., Porn U. et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. Am J Roentgenol 2003;181:1115–24.

8. Shulkin B.L., Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med 1998;39:679–88.

9. Dumba M., Jawad N., McHugh K. Neuroblastoma and nephroblastoma: a radiological review. Cancer Imaging 2015;15:5.

10. Wieland D.M., Wu J.L., Brown L.E. et al. Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with 131Iiodobenzylguanidine. J Nucl Med 1980;21:349–53.

11. Wieland D.M., Brown L.E., Tobes M.C. et al. Imaging the primate adrenal medulla with [123I] and [131I] metaiodobenzylguanidine: concise communication. J Nucl Med 1981;22:358–64.

12. Guilloteau D., Chalon S., Beulieu J.L. et al. Comparison of MIBG and monoamines uptake mechanism: pharmacological animal and blood platelets studies. Eur J Nucl Med 1988;14:341–4.

13. Smets L.A., Loesberg C., Janssen M. et al. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res 1989;49:2941–4.

14. Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 2001;91:35–62.

15. Vik T.A., Pfluger T., Kadota R. et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer 2009;52:784–90.

16. Sharp S.E., Gelfand M.J., Shulkin B.L. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 2011;41:345–53.

17. Jacobson A.F., Deng H., Lombard J. et al. 123I-metaiodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a metaanalysis. J Clin Endocrinol Metab 2010;95:2596–606.

18. Shapr S.E., Trout A.T., Weiss B.D., Gelfand M.J. MIBG in Neuroblastoma Diagnostic Imaging and Therapy. Radiographics 2016;36(1):258–78.

19. Solanki K.K., Bomanji J., Moyes J. et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled metaiodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21.

20. Hadj-Djilani N.L., Lebtahi N.E., Delaloye A.B. et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nuc Med 1995;22:322–9.

21. Fendler W.P., Melzer H.I., Walz C. et al. High 123I-MIBG uptake in neuroblastic tumours indicates unfavourable histopathology. Eur J Nucl Med Mol Imaging 2013;40(11):1701–10.

22. Maurea S., Lastoria S., Caracò C. et al. Iodine-131-MIBG imaging to monitor chemotherapy response in advanced neuroblastoma: comparison with laboratory analysis. J Nucl Med 1994;35(9):1429–35.

23. Biasotti S., Garaventa A., Villavecchia G.P. et al. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol 2000;35(2):153–5.

24. Bonnin F., Lumbroso J., Tenenbaum F. et al. Refining interpretation of MIBG scans in children. J Nucl Med 1994;35:803–10.

25. McGarvey C.K., Applegate K., Lee N.D. et al. False-positive metaiodobenzylguanidine scan for neuroblastoma in a child with opsoclonus-myoclonus syndrome treated with adrenocorticotropic hormone. J Child Neurol 2006;21:606–10.

26. http://eanm.org/publications/guidelines/ gl_paed_mibg.pdf.

27. http://eanm.org/publications/guidelines/ gl_onco_mibg_1.pdf.

28. Lebtahi N., Gudinchet F., Nenadov-Beck M. et al. Evaluating bone marrow metastasis of neuroblastoma with iodine-123-MIBG scintigraphy and MRI. J Nucl Med 1997;38:1389–92.

29. Rozovsky K., Koplewitz B.Z., Krausz Y. et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. Am J Roentgenol 2008;190(4):1085–90.

30. Dessner D.A., DiPietro M.A., Shulkin B.L. et al. MIBG detection of hepatic neuroblastoma: correlation with CT, US and surgical findings. Pediatr Radiol 1993;23(4):276–80.

31. Matthay K.K., Shulkin B., Ladenstein R. et al. Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer 2010;102(9):1319–26.

32. Decarolis B., Schneider C., Hero B. et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study. J Clin Oncol 2013;31(7):944–51.

33. Shulkin B.L., Hutchinson R.J., Castle V.P. et al. Neuroblastoma: Positron emission tomography with 2-[fluorine-18]-fluoro-2- deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199:743–50.

34. Sharp S.E., Shulkin B.L., Gelfand M.J. et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009;50:1237–43.

35. Taggart D.R., Han M.M., Quach A. et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 2009;27:5343–9.

36. Papathanasiou N.D., Gaze M.N., Sullivan K. et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 2011;52:519–25.

37. Kushner B.H. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–88.

38. Colavolpe C., Guedj E., Cammilleri S. et al. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG￾negative. Pediatr Blood Cancer 2008;51:828–31.

39. Mc Dowell H., Losty P., Barnes N., Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG negative. Pediatr Blood Cancer 2009;52:552.

40. Kushner B.H., Kramer K., Modak S. et al. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol 2009;27:1041–6.

41. Schwarz K.B., Driver I., Lewis I.J. et al. Positive MIBG scanning at the time of relapse in neuroblastoma which was MIBG negative at diagnosis. Br J Radiol 1997;70:90–2.

42. Kushner B.H., Yeung H.W., Larson S.M. et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: Fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;219:3397–405.

43. Melzer H.I., Coppenrath E., Schmid I. et al. (123)I-MIBG scintigraphy/SPECT versus (18)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 2011;38:1648–58.

44. Bleeker G., Tytgat G.A., Adam J.A. et al. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev 2015;29(9):CD009263.

45. Reubi J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003;24:389–427.

46. Kroiss A., Putzer D., Uprimny C. et.al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3- octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging 2011;38:865–73.

47. Schilling F.H., Bihl H., Jacobsson H. et al. Combined (111)In-pentetreotide scintigraphy and (123)I-mIBG scintigraphy in neuroblastoma provides prognostic information. Med Pediatr Oncol 2000;35:688–91.

48. Joshi P., Lele V. Somatostatin receptor positron emission tomography/computed tomography (PET/CT) in the evaluation of opsoclonus-myoclonus ataxia syndrome. Indian J Nucl Med 2013;28(2):108–11.

49. Gains J.E., Bomanji J.B., Fersht N.L. et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 2011;52:1041–7.

50. Rosenspire K.C., Haka M.S., Van Dort M.E. et al. Synthesis and preliminary evaluation of [11C]metahydroxyephedrine: a false neurotransmitter agent for heart neuronal imaging. J Nucl Med 1990;31:1328–34.

51. Shulkin B.L., Wieland D.M., Baro M.E. et al. PET Hydroxyephedrine Imaging of Neuroblastoma. J Nucl Med 1996;37:16–21.

52. Franzius C., Hermann K., Weckesser M. et al. Whole-body PET/CT with 11C metahydrox- yephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med 2006;47:1635–42.

53. Lopci E., Chiti A., Castellani M.R. et al. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 2011;38:S28–40.

54. Lee C.L., Wahnishe H., Sayre G.A. et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 2010;37:4861–6.

55. LaBrosse E.H., Comoy E., Bohuon C. et al. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst 1976;57:633–8.

56. Koopmans K.P., de Vries E.G., Kema I.P. et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 2006;7:728–34.

57. Jager P.L., Chirakal R., Marriott C.J. et al. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 2008;49:573–86. 58. Minn H., Kauhanen S., Seppänen M. et al. 18F-FDOPA: a multiple-target molecule. J Nucl Med 2009;50:1915–8.

58. Timmers H.J., Chen C.C., Carrasquillo J.A. et al. Comparison of 18F-fluoro-LDOPA, 18F-fluorodeoxy glucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:4757–67.

59. Fiebrich H.B., Brouwers A.H., Kerstens M.N. et al. 6-[F-18]Fluoro-Ldihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)Imetaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009;94:3922–30.

60. Kauhanen S., Seppanen M., Ovaska J. et al. The clinical value of [18F]fluoro dihydroxyphenilalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer 2009;16:255–65.

61. Piccardo A., Lopci E., Conte M. et al. Comparison of (18)F-dopa PET/CT and (123)I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 2012;39:57–61.

62. Piccardo A., Lopci E., Conte M. et al. Bone and lymph-node metastases from Neuroblastoma detected by 18F-DOPA-PET/ CT and confirmed by post-therapy 131I-MIBG, but negative on diagnostic 123I-MIBG scan. Clin Nucl Med 2014;39(1):e80–3.

63. Lopci E., Piccardo A., Nanni C. et al. 18F-DOPA PET/CT in neuroblastoma: comparison with conventional imaging with CT/MR. Clin Nucl Med 2012;37:e73–8.


Review

For citations:


Kailash A., Likar Yu.N. Advantages and disadvantages of nuclear medicine techniques used in the diagnosis of patients with neuroblastoma (a review). Russian Journal of Pediatric Hematology and Oncology. 2016;3(2):50-56. (In Russ.) https://doi.org/10.17650/2311-1267-2016-3-2-50-56

Views: 3625


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X