Preview

Российский журнал детской гематологии и онкологии (РЖДГиО)

Расширенный поиск

Новейшие тенденции в совершенствовании CAR-Т-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям

https://doi.org/10.21682/2311-1267-2021-8-2-84-95

Полный текст:

Аннотация

Среди современных подходов к лечению онкологических заболеваний важное место занимает CAR-Т-клеточная терапия с использованием цитотоксических лимфоцитов с химерными антигенными рецепторами. Данный подход зарекомендовал себя как эффективный метод лечения острого лимфобластного лейкоза с экспрессией CD19-антигена. Тем не менее нередки рецидивы заболеваний, а лечение солидных опухолей генетически модифицированными лимфоцитами демонстрирует весьма скромные результаты и сопровождается высокой токсичностью. Однако, несомненно, что CAR-Т-клеточная терапия обладает большим потенциалом в лечении онкологических заболеваний и дальнейшее совершенствование структуры и функций генетически модифицированных лимфоцитов с химерными Т-клеточными рецепторами может значительно увеличить эффективность противоопухолевого лечения.

В обзоре представлены современные данные о структуре химерных лимфоцитов разных поколений и освещены тенденции в совершенствовании CAR-Т-клеточной терапии. Представлена также фундаментальная платформа для формирования идеологии применения CAR-Т-клеток в лечении солидных злокачественных новообразований.

Об авторах

А. В. Ершов
Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет); НИИ общей реаниматологии имени В.А. Неговского ФГБУН «Федеральный научно-клинический центр реаниматологии и реабилитологии» Министерства науки и высшего образования Российской Федерации
Россия

Ершов Антон Валерьевич - доктор медицинских наук, профессор кафедры патофизиологии Первого МГМУ им. И.М. Сеченова, старший научный сотрудник НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР.

119991, Москва, ул. Трубецкая, 8, стр. 2; 107031, Москва, ул. Петровка, 25, стр. 2.

SPIN-код: 2059-3248



Г. В. Демьянов
Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Студент 4-го курса Первого МГМУ им. И.М. Сеченова.

119991, Москва, ул. Трубецкая, 8, стр. 2.



Д. А. Насруллаева
Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Студентка 4-го курса Первого МГМУ им. И.М. Сеченова.

119991, Москва, ул. Трубецкая, 8, стр. 2.



Е. Р. Радкевич
Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Студентка 4-го курса Первого МГМУ им. И.М. Сеченова.

119991, Москва, ул. Трубецкая, 8, стр. 2.



В. Т. Долгих
НИИ общей реаниматологии имени В.А. Неговского ФГБУН «Федеральный научно-клинический центр реаниматологии и реабилитологии» Министерства науки и высшего образования Российской Федерации
Россия

Доктор медицинских наук, профессор, заслуженный деятель науки РФ, главный научный сотрудник лаборатории клинической патофизиологии критических состояний НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР.

107031, Москва, ул. Петровка, 25, стр. 2.

SPIN-код: 2052-1445



Н. В. Сидорова
НМИЦ онкологии им. Н.Н. Блохина Минздрава России
Россия

Заведующая отделением детской трансплантации костного мозга и гемопоэтических стволовых клеток НМИЦ онкологии им. Н.Н. Блохина.

115478, Москва, Каширское шоссе, 23.

SPIN-код: 7729-5713



Т. Т. Валиев
НМИЦ онкологии им. Н.Н. Блохина Минздрава России
Россия

Доктор медицинских наук, Заведующий детским отделением химиотерапии гемобластозов отдела гематологии и трансплантации костного мозга НМИЦ онкологии им. Н.Н. Блохина.

115478, Москва, Каширское шоссе, 23.

SPIN-код: 9802-8610



М. М. Ефимова
НМИЦ онкологии им. Н.Н. Блохина Минздрава России
Россия

Врач-детский онколог НИИ детской онкологии и гематологии НМИЦ онкологии им. Н.Н. Блохина.

115478, Москва, Каширское шоссе, 23.



Е. Б. Мачнева
НМИЦ онкологии им. Н.Н. Блохина Минздрава России; РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Кандидат медицинских наук, врач-гематолог отделения детской трансплантации костного мозга и гемопоэтических стволовых клеток НИИ детской онкологии и гематологии НМИЦ онкологии им. Н.Н. Блохина, врач-гематолог отделения трансплантации костного мозга Российской детской клинической больницы РНИМУ им. Н.И. Пироговаэ.

115478, Москва, Каширское шоссе, 23; 119571, Москва, Ленинский просп., 117.

SPIN-код: 6143-8644



К. И. Киргизов
НМИЦ онкологии им. Н.Н. Блохина Минздрава России
Россия

Кандидат медицинских наук, заместитель директора по научной и образовательной работе НИИ детской онкологии и гематологии НМИЦ онкологии им. Н.Н. Блохина.

115478, Москва, Каширское шоссе, 23.

SPIN-код: 3803-6370



М. В. Киселевский
НМИЦ онкологии им. Н.Н. Блохина Минздрава России
Россия

Доктор медицинских наук, профессор, заведующий лабораторией клеточного иммунитета НМИЦ онкологии им. Н.Н. Блохина.

115478, Москва, Каширское шоссе, 23.

SPIN-код: 8687-2387



З. Ш. Манасова
Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Кандидат медицинских наук, доцент кафедры патофизиологии Первого МГМУ им. И.М. Сеченова.

119991, Москва, ул. Трубецкая, 8, стр. 2.

SPIN-код: 2251-6634



Список литературы

1. Павлова А.А., Масчан М. А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология 2017;12(1): 17-32. doi: 10.17650/1818-8346-2017-12-1-17-32.

2. Fitzmaurice C., Abate D., Abdulle A.S.M. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019;5(12):1749-69. doi: 10.1001/jamaoncol.2016.5688.

3. Паина О.В., Семенова Е.В., Маркова И.В., Зубаровская Л.С., Афанасьев Б. В. Современные представления о терапии острого лейкоза у детей до 1 года. Российский журнал детской гематологии и онкологии 2019;6(2):11-9. doi: 10.21682/2311-1267-2019-6-2-11-19.

4. Maher J., Wilkie S. CAR mechanics: drivingT cells into the MUC of cancer. Cancer Res 2009;69(11):4559-62. doi: 10.1158/0008-5472.CAN-09-0564.

5. Gan H.K., Burgess A.W., Clayton A.H., Scott A.M. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012;72(12):2924-30. doi: 10.1158/0008-5472.CAN-11-3898.

6. Киселевский М.В., Чикилева И.О., Ситдикова С.М., Власенко Р.Я., Караулов А.В. Перспективы применения генетически модифицированных лимфоцитов с химерным Т-клеточным рецептором (CAR-Т-кле-ток) для терапии солидных опухолей. Иммунология 2019;40(4):48-55. doi: 10.24411/0206-4952-2019-14006.

7. Штыров Е.М., Зотов Р.А., Лапштаева А.В. CAR-Т-клеточная терапия как современный метод лечения онкологических заболеваний. Бюллетень науки и практики 2019;5(5):121-7. doi: 10.33619/2414-2948/42/16.

8. Кувшинов А.Ю., Волошин С.В., Кузяева А.А., Шуваев В.А., Михалева М.А., Мартынкевич И.С., Чечеткин А.В., Бессмельцев С.С. Современные представления о CAR-Т-клеточной терапии. Вестник гематологии 2019;15(2):4-13.

9. Gill S., Maus M.V., Porter D.L. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev 2015;30(3):157-67. doi: 10.1016/j.blre.2015.10.003.

10. Brentjens R.J., Davila M.L., Riviere I., Park J., Wang X., Cowell L.G., Bartido Sh., Stefanski J., Taylor C., Olszewska M., Borquez-Ojeda O., Qu J., Wasielewska T., He Q., Bernal Y., Rijo I.V., Hedvat C., Kobos R., Curran K., Steinherz P., Jurcic J., Rosenblat T., Maslak P., Frattini M., Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.

11. Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes throught chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993;90(2):720-4. doi: 10.1073/pnas.90.2.720.

12. Wang J., Jensen M., Lin Y., Chen E., Lindgren C.G., Till B., Raubitschek A., Forman S.J., Qian X., James S., Greenberg P., Riddell S., Press O.W. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007;18(8):712-25. doi: 10.1089/hum.2007.028.

13. Pule M.A., Straathof K.C., Dotti G., Heslop H.E., Rooney C.M., Brenner M.K. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005;12:933-41. doi: 10.1016/j.ymthe.2005.04.016.

14. Chmielewski M., Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 2015;15:1145-54. doi: 10.1517/14712598.2015.1046430.

15. Maus M.V., Grupp S.A., Porter D.L., June C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014;123(17):2625-35. doi: 10.1182/blood-2013-11-492231.

16. Gong M.C., Latouche J.B., Krause A., Heston W.D., Bander N.H., Sadelain M. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1999;1(2):123-7. doi: 10.1038/sj.neo.7900018.

17. Lu P., Lu X., Zhang X., Xiong M., Zhang J., Zhou X., Qi F., Yang J., He T. Which is better in CD19 CAR-T treatment of r/r B-ALL, CD28 or 4-1BB.A parallel trial under the same manufacturing process. J Clin Oncol 2018;36:3041. doi: 10.1200/jco.2018.36.15_suppl.3041.

18. Huang R., Li X., He Y., Zhu W., Gao L., Liu Y., Gao L., Wen Q., Zhong J.F., Zhang C., Zhang X. Recent advances in CAR-T cell engineering. J Hematol Oncol 2020;13(1):86. doi: 10.1186/s13045-020-00910-5.

19. Long A.H., Haso W.M., Shern J.F., Wanhainen K.M., Murgai M., Ingaramo M., Smith J.P., Walker A.J., Kohler M.E., Venkateshwara V.R., Kaplan R.N., Patterson G.H., Fry T.J., Orentas R.J., Mackall C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581-90. doi: 10.1038/nm.3838.

20. Gomes-Silva D., Mukherjee M., Srinivasan M., Krenciute G., Dakhova O., Zheng Y., Cabral J.M.S., Roony C.M., Orange J.S., Brenner M.K., Mamonkin M. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep 2017;21:17-26. doi: 10.1016/j.celrep.2017.09.015.

21. Quintarelli C., Orlando D., Boffa I., Guercio M., Polito V.A., Petretto A., Lavarello C., Sinibaldi M., Weber G., Bufalo F.D., Giorda E., Scarsella M., Petrini S., Pagliara D., Locatelli F., Angelis B.D., Caruana I. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology 2018;7(6):e1433518. doi: 10.1080/2162402X.2018.1433518.

22. Kawalekar O.U., O'Connor R.S., Fraietta J.A., Guo L., McGettigan S.H., Posey A.D., Patel P.R., Guedan S., Scholler J., Keith B., Snyder N.W., Blair I.A., Milone M.C., June C.H. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016;44:380-90. doi: 10.1016/j.immuni.2016.01.021.

23. Chen Y., Cheng Y., Suo P., Yan C., Wang Y., Chen Y., Han W., Xu L., Zhang X., Liu K., Chang L., Xiao L., Huang X. Donor-derived CD19-targeted T cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br J Haematol 2017;179(4):598-605. doi: 10.1111/bjh.14923.

24. Cai B., Guo M., Wang Y., Zhang Y., Yang J., Guo Y., Dai H., Yu C., Sun Q., Qiao J., Hu K., Zuo H., Dong Z., Zhang Z., Feng M., Li B., Sun Y., Liu T., Liu Z., Wang Y., Huang Y., Yao B., Han W., Ai H. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia. J Hematol Oncol 2016;9(1):131. doi: 10.1186/s13045-016-0357-z.

25. Liu J., Zhong J.F., Zhang X., Zhang C. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. J Hematol Oncol 2017;10(1):35. doi: 10.1186/s13045-017-0405-3.

26. Wen S., Niu Z., Xing L., Wang Y., Li H., Kuang N., Luo J., Zhang X., Wang F. CAR-T bridging to Allo-HSCT as a treatment strategy for relapsed adult acute B-lymphoblastic leukemia: a case report. BMC Cancer 2018;18(1):1143. doi: 10.1186/s12885-018-5037-7.

27. Shen R.R., Pham C.D., Wu M., Munson D.J., Aftab B.T. CD19 chimeric antigen receptor (CAR) engineered epstein-barr virus (EBV) specific T cells - an off-the-shelf, allogeneic CAR T-cell immunotherapy platform. Cytotherapy 2019;21:S11. doi: 10.1016/j.jcyt.2019.03.569.

28. Глуханюк Е.В., Степанов А.В., Попов А.М., Масчан М.А. Механизмы резистентности B-линейного острого лимфобластного лейкоза при применении CD19-нaпрaвленной иммунотерапии. Онкогематология 2018;13(4):27-36. doi: 10.17650/1818-8346-2019-13-4-27-36.

29. Hucks G.E., Barrett D., Rheingold S.R., Aplenc R., Teachey D.T., Callahan C., Baniewicz D., White C., Talekar M., Shaw P., Brogdon J.L., Young R., Scholler J., Marcucci K., Chew A., Levine B.L., Frey N., Porter D., Lacey S., Melenhorst J., June C., Grupp S., Maude S. Humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 induce remissions in children and young adults with relapsed/refractory lymphoblastic leukemia/ lymphoma. Cytotherapy 2017;19:S9-10. doi: 10.1016/j.jcyt.2017.02.011.

30. Lohmueller J.J., Ham J.D., Kvorjak M., Finn O.J. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. OncoImmunology 2018;7(1):e1368604. doi: 10.1080/2162402X.2017.1368604.

31. Cho J.H., Collins J.J., Wong W.W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 2018;173(6):1426-38. doi: 10.1016/j.cell.2018.03.038.

32. Watanabe N., Bajgain P., Sukumaran S., Ansari S., Heslop H.E., Rooney C.M., Brenner M.K., Leen A.M., Vera J.F. Fine-tuning the CAR spacer improves T-cell potency. OncoImmunology 2016;5(12):e1253656. doi: 10.1080/2162402X.2016.1253656.

33. Ying Z., Huang X.F., Xiang X. A safe and potent anti-CD19 CAR T cell therapy. Nat Med 2019;25(6):947-53. doi: 10.1038/s41591-019-0421-7.

34. Konstorum A., Vella A.T., Adler A.J., Laubenbacher R.C. A mathematical model of combined CD8 T cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Sci Rep 2019;9(1):10862. doi: 10.1038/s41598-019-47333-y.

35. Wang X., Senechal B., Curran K.J. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378(5):449-59. doi: 10.1056/NEJMoa1709919.

36. Duell J., Dittrich M., Bedke T., Mueller T., Eisele F., Rosenwald A., Rasche L., Hartmann E., Dandekar T., Einsele H., Topp M.S. Frequency of regulatory T-cells determines the outcome of the T-cellengaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 2017;31(10):2181-90. doi: 10.1038/leu.2017.41.

37. Choi B.D., Yu X., Castano A.P. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019;37(9):1049-58. doi: 10.1038/s41587-019-0192-1.

38. Yu J., Wang W., Huang H. Efficacy and safety of bispecific T-cell engager (BiTE) antibody blinatumomab for the treatment of relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin's lymphoma: a systemic review and meta-analysis. Hematology 2019;24(1):199-207. doi: 10.1080/16078454.2018.1549802.

39. Singh N., Perazzelli J., Grupp S.A., Barrett D.M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med 2016;8(320):320ra3. doi: 10.1126/scitranslmed.aad5222.

40. Ragonnaud E., Andersson A.-M.C., Pedersen A.E., Laurs en H., Holst P.J. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression. Vaccine 2016;34(18):2147-56. doi: 10.1016/j.vaccine.2015.06.08.

41. Linot C., Saini J., Adusumilli P.S. Sustained, cell-intrinsic versus intermittent, cell-extrinsic checkpoint blockade in solid tumor CAR T-cell therapy. J Clin Oncol 2020;38:16. doi: 10.1200/jco.2020.38.5_suppl.16.

42. Wei J., Han X., Bo J., Han W. Target selection for CAR-T therapy. J Hematol Oncol 2019;12(1):62. doi: 10.1186/s13045-019-0758-x.

43. Shi X., Zhang D., Li F., Zhang Z., Wang S., Xuan Y., Ping Y., Zhang Y. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol 2019;12(1):127. doi: 10.1186/s13045-019-0831-5.

44. Wei J., Luo C., Wang Y., Guo Y., Dai H., Tong C., Ti D., Wu Z., Han W. PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. J Immuno Therapy Cancer 2019;7(1):209. doi: 10.1186/s40425-019-0685-y.

45. Chen J., Lopez-Moyado I.F., Seo H., Lio C.W.J., Hempleman L.J., Sekiya T., Yoshimura A., Scott-Browne J.P., Rao A. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 2019;567(7749):530-4. doi: 10.1038/s41586-019-0985-x.

46. Peng W., Ye Y., Rabinovich B.A., Liu C., Lou Y., Zhang M., Whittington M., Yang Y., Overwijk W.W., Lizee G., Hwu P. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 2010;16(22):5458-68. doi: 10.1158/1078-0432.CCR-10-0712.

47. Liu G., Rui W., Zheng H., Huang D., Yu F., Zhang Y., Dong J., Zhao X., Lin X. CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. Eur J Immunol 2020;50(5):712-24. doi: 10.1002/eji.201948457.

48. Perera L.P., Zhang M., Nakagawa M., Petrus M.N., Maeda M., Kadin M.E., Waldmann T.A., Perera P.Y. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol 2017;92(9):892-901. doi: 10.1002/ajh.24794.

49. Liu H., Lei W., Zhang C., Yang C., Wei J., Guo Q., Guo X., Chen Z., Lu Y., Lu Z., Qian W. A phase I trial using CD19 CAR-T expressing PD-1/CD28 chimeric switch-receptor for refractory or relapsed B-cell lymphoma. J Clin Oncol 2019;37:7557. doi: 10.1200/jco.2019.37.15_suppl.7557.

50. Wang Y., Jiang H., Luo H., Sun Y., Shi B., Sun R., Li Z. An IL-4/21 inverted cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Front Immunol 2019;10:1691. doi: 10.3389/fimmu.2019.01691.

51. Zhang H., Ye Z.L., Yuan Z.G., Luo Z.Q., Jin H.J., Qian Q.J. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 2016;12(6):718-29. doi: 10.7150/ijbs.14405.

52. Gargett T., Brown M.P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 2014;5:235. doi: 10.3389/fphar.2014.00235.

53. Sadelain M. CD19 CAR T Cells. Cell 2017;171(7):1471. doi: 10.1016/j.cell.2017.12.002.

54. Jones B.S., Lamb L.S., Goldman F., Stasi A.D. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 2014;5:254. doi: 10.3389/fphar.2014.00254.

55. Калинин Р.С., Петухов А.В., Кнорре В.Д., Масчан М.А., Степанов А.В., Габибов А. Г. Молекулярные подходы к безопасной и контролируемой Т-клеточной терапии. Acta Naturae 2018;10(2):16-23. PMID: 30116611.

56. Juillerat A., Marechal A., Filhol J.M., Valogne Y., Valton J., Duclert A., Duchateau P., Poirot L. An oxygen sensitive self-decision making engineered CAR T-cell. Sci Rep 2017;7:39833. doi: 10.1038/srep39833.

57. Marofi F., Motavalli R., Safonov V.A., Thangavelu L., Yumashev A.V., Markov A., Shomali N., Chartrand M.S., Pathak Y., Jarahian M., Izadi S., Hassanzadeh A., Shirafkan N., Tahmasebi S., Khiavi F.M. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther 2021;12(1):81. doi: 10.1186/s13287-020-02128-1.

58. Newick K., O'Brien S., Moon E., Albelda S.M. CAR T Cell Therapy for Solid Tumors. Annu Rev Med 2017;68:139-52. doi: 10.1146/annurev-med-062315-120245.

59. Salmon H., Franciszkiewicz K., Damotte D., Dieu-Nosjean M.C., Validire P., Trautmann A., Mami-Chouaib F., Donnadieu E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 2012;122(3):899-910. doi: 10.1172/JCI45817.

60. Poznansky M.C., Olszak I.T., Evans R.H., Wang Z., Foxall R.B., Olson D.P., Weibrecht K., Luster A.D., Scadden D.T. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J Clin Invest 2002;109(8):1101-10. doi: 10.1172/JCI13853.

61. Brown C.E., Alizadeh D., Starr R. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med 2016;375(26):2561-9. doi: 10.1056/NEJMoa1610497.

62. Adusumilli P.S., Cherkassky L., Villena-Vargas J. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 2014;6(261):261ra151. doi: 10.1126/scitranslmed.3010162.

63. Newick K., O'Brien S., Sun J., Kapoor V., Maceyko S., Lo A., Pure E., Moon E., Albelda S.M. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res 2016;4(6):541-51. doi: 10.1158/2326-6066.CIR-15-0263.

64. Nishio N., Diaconu I., Liu H., Cerullo V., Caruana I., Hoyos V., Bouchier-Hayes L., Savoldo B., Dotti G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014;74(18):5195-205. doi: 10.1158/0008-5472.CAN-14-0697.

65. Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21(3):309-22. doi: 10.1016/j.ccr.2012.02.022.

66. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19(11):1423-37. doi: 10.1038/nm.3394.

67. Burga R.A., Thorn M., Point G.R., Guha P., Nguyen C.T., Licata L.A., DeMatteo R.P., Ayala A., Espat N.J., Junghans R.P., Katz S.C. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 2015;64(7):817-29. doi: 10.1007/s00262-015-1692-6.

68. Zhou Q., Munger M.E., Highfill S.L., Tolar J., Weigel B.J., Riddle M., Sharpe A.H., Vallera D.A., Azuma M., Levine B.L., June C.H., Murphy W.J., Munn D.H., Blazar B.R. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 2010;116(14):2484-93. doi: 10.1182/blood-2010-03-275446.


Для цитирования:


Ершов А.В., Демьянов Г.В., Насруллаева Д.А., Радкевич Е.Р., Долгих В.Т., Сидорова Н.В., Валиев Т.Т., Ефимова М.М., Мачнева Е.Б., Киргизов К.И., Киселевский М.В., Манасова З.Ш. Новейшие тенденции в совершенствовании CAR-Т-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям. Российский журнал детской гематологии и онкологии (РЖДГиО). 2021;8(2):84-95. https://doi.org/10.21682/2311-1267-2021-8-2-84-95

For citation:


Ershov A.V., Demyanov G.V., Nasrullaeva D.A., Radkevich E.R., Dolgikh V.T., Sidorova N.V., Valiev T.T., Efimova M.M., Machneva E.B., Kirgizov K.I., Kiselevsky M.V., Manasova Z.S. The latest trends in improving CAR-T cell therapy: from leukemia to solid malignant tumors. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):84-95. (In Russ.) https://doi.org/10.21682/2311-1267-2021-8-2-84-95

Просмотров: 36


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)