Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

Thrombocytopathy

https://doi.org/10.17650/2311-1267-2015-1-54-60

Abstract

The article is devoted to general issues of classification and differential diagnosis of thrombocytopathy. Features of pathogenesis, clinical course and diagnosis of certain rare inherited thrombocytopathies are highlighted. Particular attention is paid to the formation of the molecular basis of these diseases. The basic genetic mutations associated with a number of thrombocytopathies are given.

About the Authors

I. A. Demina
Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia
Russian Federation
1 Samory Mashela St., Moscow, 117198, Russia


M. A. Kumskova
Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia
Russian Federation
1 Samory Mashela St., Moscow, 117198, Russia


M. A. Panteleev
Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia; Hematological Research Center, Ministry of Health of Russia; Theoretical Problems Center of Physical and Chemical Pharmacology, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

1 Samory Mashela St., Moscow, 117198, Russia;

4a Novo-Zykovskiy Pr-d, Moscow, 125167, Russia; 

38A, Bldg. 1, Leninskiy Prosp., Moscow, 119991, Russia;

1, Bldg. 8 Leninskie Gory St., Moscow, 119234, Russia



References

1. Thon J.N., Italiano J.E. Platelets: production, morphology and ultrastructure. Handb Exp Pharmacol 2012;210:3–22.

2. Bolton-Maggs P.H., Chalmers E.A., Collins P.W. et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 2006;135:603–33.

3. Salles I.I., Feys H.B., Iserbyt B.F. et al. Inherited traits affecting platelet function. Blood Rev 2008;22:155–72.

4. Nurden A.T., Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2014;165:165–78.

5. Nurden A.T., Fiore M., Nurden P. et al. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011;118:5996–6005.

6. Nurden A.T., Pillois X., Nurden P. Understanding the genetic basis of Glanzmann thrombasthenia: Implications for treatment. Exp Rev Hematol 2012;5:487–503.

7. George J.N., Caen J.P., Nurden A.T. Glanzmann, s thrombasthenia: The spectrum of clinical disease. Blood 1990;75:1383–95.

8. Cong N.V., Uzan G., Gross M.S. et al. Assignment of human platelet GP2B (GPIIb) gene to chromosome 17, region q21.1–q21.3. Hum Genet 1988;80:389–92.

9. Coller B.S., Shattil S.J. The GPIIb/IIIa (integrin αIIbβ3) odyssey: a technologydriven saga of a receptor with twists and turns and even a bend. Blood 2008;112:3011–25.

10. Thornton M.A., Poncz M., Korotishevsky M. et al. The human platelet αIIb gene is not closely linked to its integrin partner β3. Blood 1999;94:2039–47.

11. Shattil S.J. Signaling through platelet integrin alpha IIb beta 3: inside-out, outsidein, and sideway. Thromb Haemost 1999;82:318–25.

12. Еmambokus N.R., Frampton J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 2003;19:33–45.

13. Arnaout M.A., Mahalingam B., Xiong J.P. Integrin structure, allostery, and bidirectional signalling. Annu Rev Cell Biol 2005;21:381–41.

14. Calvete J.J. On the structure and function of platelet integrin alpha IIb beta 3, the fibrinogen receptor. Proc Soc Exp Biol Med 1995;208:346–60.

15. Mitchell W.B., Li J.H., French D.L. et al. AlphaIIbbeta3 biogenesis is controlled by engagement of alphaIIb in the calnexin cycle via the N15-linked glycan. Blood 2006;107:2713–9.

16. Wilcox D.A., Wautier J.L., Pidard D. et al. A single amino acid substitution flanking the fourth calcium binding domain of alphaIIb prevents maturation of the alphaIIbbeta3 integrin complex. J Biol Chem 1994;269:4450–7.

17. Nelson E.J., Li J., Mitchell W.B. et al. Three novel betapropeller mutations causing Glanzmann thrombasthenia result in production of normally stable pro-alphaIIb but variably impaired progression of proalphaIIbbeta3 from endoplasmic reticulum to Golgi. J Thromb Haemost 2005;3:2773–83.

18. Gonzalez-Manchon C., Arias-Salgado E.G., Butta N. et al. A novel homozygous splice junction mutation in GPIIb associated with alternative splicing, nonsense-mediated decay of GPIIbmRNA, and type II Glanzmann, s thrombasthenia. J Thromb Haemost 2003;1:1071–8.

19. Mansour W., Einav Y., Hauschner H. et al. An αIIb mutation in patients with Glanzmann thrombasthenia located in the N-terminus of blade 1 of the betapropeller (Asn2Asp) disrupts a calcium binding site in blade 6. J Thromb Haemost 2011;9:192–200.

20. Raccuglia G. Grey platelet syndrome: a variety of qualitative platelet disorder. Am J Med 1971;51:818–28.

21. Gerrard J.M., Phillips D.R., Rao G.H. et al. Biochemical studies of two patients with the grey platelet syndrome. J Clin Invest 1980;66:102–9.

22. Levy-Toledano S., Caen J.P., Breton-Gorius J. et al. Gray platelet syndrome: alpha-granule deficiency. Its influence on platelet function. J Lab Clin Med 1981;98:831–48.

23. Nurden A.T., Kunicki T.J., Dupuis G. et al. Specific protein and glycoprotein deficiencies in platelets isolated from two patients with the grey platelet syndrome. Blood 1982;59:709–18.

24. Maynard D.M., Heijnen H.F., Gahl W.A. et al. The alpha granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 2010;8:1786–96.

25. White J.G. Ultrastructural studies of the gray platelet syndrome. Am J Pathol 1979;95:445–62.

26. Nurden A.T., Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007;21:21–36.

27. Nurden A.T., Nurden P. Inherited defects of platelet function. Rev Clin Exp Hematol 2001;5:314–34.

28. Gunay-Aygun M., Zivony-Elboum Y., Gumruket F. et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010;116:4990–5001.

29. Tubman V.N., Levine J.E., Campagnaet D.R. et al. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood 2007;109:3297–9.

30. Monteferrario D., Bolar N.A., Marnethet A.E. et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 2014; 370:245–53.

31. Albers C.A., Cvejic A., Favier R. et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011;43:735–7.

32. Andrews R.K., Berndt M.C. Bernard – Soulier syndrome: an update. Semin Thromb Hemost 2013;39:656–62.

33. Buchbinder D., Nugent D.J., Fillipovich A.H. Wiskott–Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl Clin Genet 2014;7:55–66.

34. Zhang S., Zhou X., Liu S. et al. MYH9-related disease: description of a large Chinese pedigree and a survey of reported mutations. Acta Haematol 2014;132:193–8.

35. Nurden A.T. Qualitative disorders of platelets and megakaryocytes. J Thromb Haemost 2005;3:1773–82.

36. Zwaal R.F., Comfurius P., Bevers E.M. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim Biophys Acta 2004;1636:119–28.


Review

For citations:


Demina I.A., Kumskova M.A., Panteleev M.A. Thrombocytopathy. Russian Journal of Pediatric Hematology and Oncology. 2015;2(1):54-60. (In Russ.) https://doi.org/10.17650/2311-1267-2015-1-54-60

Views: 1424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X