Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

Neuroblastoma chemoimmunotherapy: current results and application prospects

https://doi.org/10.21682/2311-1267-2023-10-2-77-91

Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor of childhood affecting children from 0 to 14 years old. Despite the achievements of modern multimodal risk-adapted therapy, the prognosis in patients with high-risk NB remains unfavorable. Numerous research groups have shown that a good response achieved at the time of completion of the induction stage of therapy in this subgroup of patients correlates with survival rates. Thus, improving the response to induction therapy may be a potential mechanism for improving long-term survival rates. Over the past few decades, traditional approaches to cancer therapy have undergone a radical revolution, largely due to the development and implementation of the immunotherapy method. It is known that combined antitumor therapy is superior to monotherapy and is one of the tools for overcoming heterogeneous drug resistance. A vast number of preclinical studies has shown that GD2-directed monoclonal antibodies (mAbs) are able to enhance the cytostatic effects of chemotherapeutic drugs, which has become a promising model for clinical studies of various chemoimmunotherapy regimens, which have demonstrated convincing evidence of safety and an acceptable toxicity profile with an encouraging effect on objective response rates, overall and event-free survival in both patients with recurrent, refractory NB, and primary patients of the high-risk group.

The article discusses fundamental ideas about the synergistic interaction of GD2-directed mAbs in combination with cytostatic agents, the role of response to the induction stage of therapy and prospects for the use of induction chemoimmunotherapy as a method of improving postinduction response, event-free and overall survival in patients with NB.

About the Authors

N. S. Ivanov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Pediatric Oncologist Department of Clinical Oncology,

1 Samory Mashela St., Moscow, 117997



D. Yu. Kachanov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Dr. of Sci. (Med.), Deputy Director of the Institute of Oncology, Radiology and Nuclear  Medicine & Head of the Department of Clinical Oncology,

1 Samory Mashela St., Moscow, 117997



T. V. Shamanskaya
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Children Oncologist, Head of the Department of Embryonic Tumors Research of the Institute of Oncology, Radiology and Nuclear Medicine,

1 Samory Mashela St., Moscow, 117997



References

1. Johnsen J.I., Dyberg C., Wickström M. Neuroblastoma – A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci. 2019;12:9. doi: 10.3389/fnmol.2019.00009.

2. Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078. doi: 10.1038/nrdp.2016.78.

3. Park J.R., Eggert A., Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24(1):65–86. doi :10.1016/j.hoc.2009.11.011.

4. Maris J.M., Hogarty M.D., Bagatell R., Cohn S.L. Neuroblastoma. Lancet. 2007;369(9579):2106–20. doi: 10.1016/S0140-6736(07)60983-0.

5. Brodeur G.M., Pritchard J., Berthold F., Carlsen N.L., Castel V., Castelberry R.P., De Bernardi B., Evans A.E., Favrot M., Hedborg F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77. doi: 10.1200/JCO.1993.11.8.1466.

6. Spitz R., Betts D.R., Simon T., Boensch M., Oestreich J., Niggli F.K., Ernestus K., Berthold F., Hero B. Favorable outcome of triploid neuroblastomas: a contribution to the special oncogenesis of neuroblastoma. Cancer Genet Cytogenet. 2006;167(1):51–6. doi: 10.1016/j.cancergencyto.2005.09.001.

7. [Electronic resource]: https://nodgo.org/sites/default/files/protokol_neuroblastoma-1.pdf. NB 2004 Trial Protocol for Risk Adapted Treatment of Children with Neuroblastoma. Berthold F. (principal investigator).

8. Kachanov D., Shamanskaya T., Andreev E., Talypov S., Khismatullina R., Shevtsov D., Skorobogatova E., Kirgizov K., Hachatryan L., Roschin V., Olshanskaya Y., Kazakova A., Shcherbakov A., Tereschenko G., Nechesnyuk A., Grachev N., Fomin D., Maschan M., Likar Y., Varfolomeeva S. P-0503 Treatment of High-Risk Neuroblastoma: Experience of Russian Federal Centers. 48th Congress of the International Society of Paediatric Oncology (SIOP). 19–22 October, 2016. Dublin, Ireland. Pediatric Blood Cancer. 2016;63(Suppl. S3):197.

9. Tepmongkol S., Heyman S. 131I-MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. Med Pediatr Oncol. 1999;32(6):427–31. doi: 10.1002/(sici)1096-911x(199906)32:6<427::aid mpo6>3.0.co;2-t.

10. Shamanskaya T.V., Andreeva N.A., Utalieva D.T., Kachanov D.Yu. Anti-GD2 immunotherapy with the chimeric antibody ch14.18 for high-risk neuroblastoma. Voprosi gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology. 2020;19(3):173–8. (In Russ.). doi: 10.24287/1726-1708-2020-19-3-173-188.

11. Pinto N., Naranjo A., Hibbitts E., Kreissman S.G., Granger M.M., Irwin M.S., Bagatell R., London W.B., Greengard E.G., Park J.R., DuBois S.G. Predictors of diff erential response to induction therapy in high-risk neuroblastoma: A report from the Children’s Oncology Group (COG). Eur J Cancer. 2019;112:66–79. doi: 10.1016/j.ejca.2019.02.003.

12. Shamanskaya T.V., Kachanov D.Yu., Yadgarov M.Yа. The impact of response to induction chemotherapy on the event-free and overall survival in patients with high-risk neuroblastoma: a systematic review and meta-analysis. Voprosi gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology. 2022;21(2):141–56. (In Russ.). doi: 10.24287/1726-1708-2022-21-2-141-156.

13. Pearson A.D., Pinkerton C.R., Lewis I.J., Imeson J., Ellershaw C., Machin D., European Neuroblastoma Study Group; Children’s Cancer and Leukaemia Group (CCLG formerly United Kingdom Children's Cancer Study Group). High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9(3):247–56. doi: 10.1016/S1470-2045(08)70069-X.

14. Peinemann F., Tushabe D.A., van Dalen E.C., Berthold F. Rapid COJEC versus standard induction therapies for high-risk neuroblastoma. Cochrane Database Syst Rev. 2015;(5):CD010774. doi: 10.1002/14651858.CD010774.pub2.

15. Garaventa A., Poetschger U., Valteau-Couanet D., Luksch R., Castel V., Elliott M., Ash S., Chan G.C.F., Laureys G., Beck-Popovic M., Vettenranta K., Balwierz W., Schroeder H., Owens C., Cesen M., Papadakis V., Trahair T., Schleiermacher G., Ambros P., Sorrentino S., Pearson A.D.J., Ladenstein R.L. Randomized Trial of Two Induction Therapy Regimens for High-Risk Neuroblastoma: HR-NBL1.5 International Society of Pediatric Oncology European Neuroblastoma Group Study. J Clin Oncol. 2021;39(23):2552–63. doi: 10.1200/JCO.20.03144.

16. Berthold F., Faldum A., Ernst A., Boos J., Dilloo D., Eggert A., Fischer M., Frühwald M., Henze G., Klingebiel T., Kratz C., Kremens B., Krug B., Leuschner I., Schmidt M., Schmidt R., Schumacher-Kuckelkorn R., von Schweinitz D., Schilling F.H., Theissen J., Volland R., Hero B., Simon T. Extended induction chemotherapy does not improve the outcome for high-risk neuroblastoma patients: results of the randomized open-label GPOH trial NB2004-HR. Ann Oncol. 2020;31(3):422–9. doi: 10.1016/j.annonc.2019.11.011.

17. DuBois S.G., Bagatell R. Improving Outcomes in Children With High-Risk Neuroblastoma: The Role of Randomized Trials. J Clin Oncol. 2021;39(23):2525–7. doi: 10.1200/JCO.21.01066.

18. Sharma P., Jhawat V., Mathur P., Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med Oncol. 2022;39(5):76. doi: 10.1007/s12032-022-01677-0.

19. Plana D., Palmer A.C., Sorger P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology. Cancer Discov. 2022;12(3):606–24. doi: 10.1158/2159-8290.CD-21-0212.

20. Salas-Benito D., Pérez-Gracia J.L., Ponz-Sarvisé M., Rodriguez-Ruiz M.E., Martínez-Forero I., Castañón E., López-Picazo J.M., Sanmamed M.F., Melero I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov. 2021;11(6):1353–67. doi: 10.1158/2159-8290.CD-20-1312.

21. Yoshida S., Kawaguchi H., Sato S., Ueda R., Furukawa K. An anti-GD2 monoclonal antibody enhances apoptotic eff ects of anticancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res. 2002;93(7):816–24. doi: 10.1111/j.1349-7006.2002.tb01324.x.

22. Kowalczyk A., Gil M., Horwacik I., Odrowaz Z., Kozbor D., Rokita H. The GD2-specifi c 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells. Cancer Lett. 2009;281(2):171–82. doi: 10.1016/j.canlet.2009.02.040.

23. Ivanov N.S., Kachanov D.Yu., Larin S.S., Mollaev M.D., Konovalov D.M., Shamanskaya T.V. The role of GD2 as a diagnostic and prognostic tumor marker in neuroblastoma (literature review). Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology. 2021;8(4):47–59. (In Russ.). doi: 10.21682/2311-1267-2021-8-4-47-59.

24. Cazet A., Lefebvre J., Adriaenssens E., Julien S., Bobowski M., Grigoriadis A., Tutt A., Tulasne D., Le Bourhis X., Delannoy P. GD2 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res. 2010;8(11):1526–35. doi: 10.1158/1541-7786.MCR-10-0302.

25. Cazet A., Bobowski M., Rombouts Y., Lefebvre J., Steenackers A., Popa I., Guérardel Y., Le Bourhis X., Tulasne D., Delannoy P. The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology. 2012;22(6):806–16. doi: 10.1093/glycob/cws049.

26. Ivanov N.S., Kholodenko R.V., Kachanov D.Yu., Larin S.S., Mollaev M.D., Shamanskaya T.V. The role of gangliosides in the modulation of carcinogenesis. Voprosi gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology. 2022;21(2):157–66. (In Russ.). doi: 10.24287/1726-1708-2022-21-2-157-166.

27. Mody R., Naranjo A., Van Ryn C., Yu A.L., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Sondel P.M., Bender J.G., Maris J.M., Park J.R., Bagatell R. Irinotecantemozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an openlabel, randomised, phase 2 trial. Lancet Oncol. 2017;18(7):946–57. doi: 10.1016/S1470-2045(17)30355-8.

28. Mody R., Yu A.L., Naranjo A., Zhang F.F., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Hank J.A., Felder M., Birstler J., Sondel P.M., Asgharzadeh S., Glade-Bender J., Katzenstein H., Maris J.M., Park J.R., Bagatell R. Irinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children With Refractory or Relapsed Neuroblastoma: A Report From the Children’s Oncology Group. J Clin Oncol. 2020;38(19):2160–9. doi: 10.1200/JCO.20.00203.

29. Bagatell R., London W.B., Wagner L.M., Voss S.D., Stewart C.F., Maris J.M., Kretschmar C., Cohn S.L. Phase II study of irinotecan and temozolomide in children with relapsed or refractory neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(2):208–13. doi: 10.1200/JCO.2010.31.7107.

30. Federico S.M., McCarville M.B., Shulkin B.L., Sondel P.M., Hank J.A., Hutson P., Meagher M., Shafer A., Ng C.Y., Leung W., Janssen W.E., Wu J., Mao S., Brennan R.C., Santana V.M., Pappo A.S., Furman W.L. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clin Cancer Res. 2017;23(21):6441–9. doi: 10.1158/1078-0432.CCR-17-0379.

31. Park J.R., Scott J.R., Stewart C.F., London W.B., Naranjo A., Santana V.M., Shaw P.J., Cohn S.L., Matthay K.K. Pilot induction regimen incorporating pharmacokinetically guided topotecan for treatment of newly diagnosed high-risk neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(33):4351–7. doi: 10.1200/JCO.2010.34.3293.

32. Talleur A.C., Triplett B.M., Federico S., Mamcarz E., Janssen W., Wu J., Shook D., Leung W., Furman W.L. Consolidation Therapy for Newly Diagnosed Pediatric Patients with High-Risk Neuroblastoma Using Busulfan/Melphalan, Autologous Hematopoietic Cell Transplantation, Anti-GD2 Antibody, Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-2, and Haploidentical Natural Killer Cells. Biol Blood Marrow Transplant. 2017;23(11):1910–7. doi: 10.1016/j.bbmt.2017.07.011.

33. Furman W.L., Federico S.M., McCarville M.B., Shulkin B.L., Davidoff A.M., Krasin M.J., Sahr N., Sykes A., Wu J., Brennan R.C., Bishop M.W., Helmig S., Stewart E., Navid F., Triplett B., Santana V.M., Bahrami A., Anthony G., Yu A.L., Hank J., Gillies S.D., Sondel P.M., Leung W.H., Pappo A.S. A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clin Cancer Res. 2019;25(21):6320–8. doi: 10.1158/1078-0432.CCR-19-1452.

34. Furman W.L., McCarville B., Shulkin B.L., Davidoff A., Krasin M., Hsu C.W., Pan H., Wu J., Brennan R., Bishop M.W., Helmig S., Stewart E., Navid F., Triplett B., Santana V., Santiago T., Hank J.A., Gillies S.D., Yu A., Sondel P.M., Leung W.H., Pappo A., Federico S.M. Improved Outcome in Children With Newly Diagnosed High-Risk Neuroblastoma Treated With Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. J Clin Oncol. 2022;40(4):335–44. doi: 10.1200/JCO.21.01375.

35. Federico S.M., Naranjo A., Zhang F., Marachelian A., Desai A.V., Shimada H., Braunstein S.E., Tinkle C.L., Yanik G.A., Asgharzadeh S., Sondel P.M., Yu A.L., Acord M., Parisi M.T., Shulkin B.L., DuBois S.G., Bagatell R., Park J.R., Furman W.L., Shusterman S. A pilot induction regimen incorporating dinutuximab and sargramostim for the treatment of newly diagnosed high-risk neuroblastoma: A report from the Children’s Oncology Group. J Clin Oncol. 2022;40(16_suppl):10003. doi: 10.1200/JCO.2022.40.16_suppl.10003.

36. [Electronic resource]: https://clinicaltrials.gov/ProvidedDocs/83/NCT03786783/Prot_SAP_000.pdf. ANBL17P1 Trial Protocol for Pilot Induction Regimen Incorporating Chimeric 14.18 Antibody (ch14.18, dinutuximab) (NSC# 764038) and Sargramostim (GM-CSF) for the Treatment of Newly Diagnosed High Risk Neuroblastoma. S.M. Federico (study chair).

37. Modak S., Kushner B.H., Mauguen A., Castañeda A., Varo A., Gorostegui M., Muñoz J.P., Santa-Maria V., Basu E.M., Iglesias Cardenas F., Pandit-Taskar N., Cheung N.K.V., Mora J. Naxitamabbased chemoimmunotherapy for resistant high-risk neuroblastoma: Results of “HITS” phase II study. J Clin Oncol. 2022;10028. doi: 10.1200/JCO.2022.40.16_suppl.10028.

38. Ladenstein R., Pötschger U., Valteau-Couanet D., Luksch R., Castel V., Ash S., Laureys G., Brock P., Michon J.M., Owens C., Trahair T., Chi Fung Chan G., Ruud E., Schroeder H., Beck-Popovic M., Schreier G., Loibner H., Ambros P., Holmes K., Castellani M.R., Gaze M.N., Garaventa A., Pearson A.D.J., Lode H.N. Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers (Basel). 2020;12(2):309. doi: 10.3390/cancers12020309.

39. Mueller I., Ehlert K., Endres S., Pill L., Siebert N., Kietz S., Brock P., Garaventa A., Valteau-Couanet D., Janzek E., Hosten N., Zinke A., Barthlen W., Varol E., Loibner H., Ladenstein R., Lode H.N. Tolerability, response and outcome of high-risk neuroblastoma patients treated with long-term infusion of anti-GD2 antibody ch14.18/ CHO. MAbs. 2018;10(1):55–61. doi: 10.1080/19420862.2017.1402997.

40. Ladenstein R., Pötschger U., Valteau-Couanet D., Gray J., Luksch R., Balwierz W., Castel V., Ash S., Popovic M., Laureys G., Chan G., Ruud E., Vettenranta K., Owens C., Schroeder H., Loibner H., Ambros P., Sarnacki S., Boterberg T., Lode H. Randomization of dosereduced subcutaneous interleukin-2 (scIL2) in maintenance immunotherapy (IT) with anti-GD2 antibody dinutuximab beta (DB) long-term infusion (LTI) in front-line high risk neuroblastoma patients: Early results from the HR-NBL1/SIOPEN trial. J Clin Oncol. 2019;37(15):10013. doi: 10.1200/JCO.2019.37.15_suppl.10013.

41. Lode H., Eggert A., Ladenstein R., Riesebeck S., Siebert N., Dworzak M., Arnardottir H., Hundsdoerfer P. Ch14.18/CHO and GPOH Induction Chemotherapy Cycles in Refractory Relapsed or Progressing High Risk Neuroblastoma Patients. Abstract Book for the ANR2018 Conference. P. 61.

42. Gray J., Moreno L., Weston R., Barone G., Rubio A., Makin G., Vaidya S., Ng A., Castel V., Nysom K., Laureys G., Van Eijkelenburg N., Owens C., Gambart M., DJ Pearson A., Laidler J., Kearns P., Wheatley K. BEACON-Immuno: Results of the dinutuximab beta (dB) randomization of the BEACON-Neuroblastoma phase 2 trial – A European Innovative Therapies for Children with Cancer (ITCC – International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN) trial. J Clin Oncol. 2022;40(16_suppl):10002.

43. [Electronic resource]: https://clinicaltrials.gov/ct2/show/study/NCT05272371. ChIm-NB-PL Trial Protocol for Immunotherapy With Dinutuximab Beta in Combination With Chemotherapy for the Treatment of Patients With Primary Neuroblastoma Refractory to Standard Therapy and With Relapsed or Progressive Disease. W. Balwierz., A. Wieczorek.

44. Wieczorek A., Zaniewska-Tekieli A., Ehlert K., Pawinska-Wasikowska K., Balwierz W., Lode H. Dinutuximab beta combined with chemotherapy in patients with relapsed or refractory neuroblastoma. Front Oncol. 2023;13:1082771. doi: 10.3389/fonc.2023.1082771.

45. Olgun N., Cecen E., Ince D., Kizmazoglu D., Baysal B., Onal A., Ozdogan O., Guleryuz H., Cetingoz R., Demiral A., Olguner M., Celik A., Kamer S., Ozer E., Altun Z., Aktas S. Dinutuximab beta plus conventional chemotherapy for relapsed/refractory high-risk neuroblastoma: A single-center experience. Front Oncol. 2022;12:1041443. doi: 10.3389/fonc.2022.1041443.

46. Cheung I.Y., Hsu K., Cheung N.K. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocytemacrophage colony-stimulating factor. J Clin Oncol. 2012;30(4):426–32. doi: 10.1200/JCO.2011.37.6236.

47. Petros W.P., Crawford J. Safety of concomitant use of granulocyte colony-stimulating factor or granulocyte-macrophage colonystimulating factor with cytotoxic chemotherapy agents. Curr Opin Hematol. 1997;4(3):213–6. doi: 10.1097/00062752-199704030-00010.

48. Martinez Sanz P., van Rees D.J., van Zogchel L.M.J., Klein B., Bouti P., Olsman H., Schornagel K., Kok I., Sunak A., Leeuwenburg K., Timmerman I., Dierselhuis M.P., Kholosy W.M., Molenaar J.J., van Bruggen R., van den Berg T.K., Kuijpers T.W., Matlung H.L., Tytgat G.A.M., Franke K. G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment. J Immunother Cancer. 2021;9(5):e002259. doi: 10.1136/jitc-2020-002259.

49. Mora J., Chantada G.L. Correspondence on “G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment” by Martinez Sanz et al. J Immunother Cancer. 2021;9(12):e003751. doi: 10.1136/jitc-2021-003751.


Review

For citations:


Ivanov N.S., Kachanov D.Yu., Shamanskaya T.V. Neuroblastoma chemoimmunotherapy: current results and application prospects. Russian Journal of Pediatric Hematology and Oncology. 2023;10(2):77-91. (In Russ.) https://doi.org/10.21682/2311-1267-2023-10-2-77-91

Views: 1053


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X