Modern therapeutic approaches for β-thalassemia: from blood transfusion to gene therapy
https://doi.org/10.21682/2311-1267-2025-12-3-56-67
Abstract
Beta-thalassemia is a hereditary disorder caused by pathogenic variants in the HBB gene that lead to impaired synthesis of β-globin chains, resulting in ineffective erythropoiesis, development of microcytic hypochromic anemia, and a complex of systemic complications. This article reviews current therapeutic strategies for this condition. Adequate transfusion support combined with regular chelation therapy remains the cornerstone of standard treatment. In current practice, other methods of conservative therapy are also used, such as those targeting fetal hemoglobin induction, stimulation of erythropoiesis, and other pathogenetic mechanisms. Allogeneic hematopoietic stem cell transplantation was until recently the only method capable of providing a complete cure for β-thalassemia. However, its application is limited by the availability of a fully compatible donor and the risks of transplantation complications, including a high risk of graft failure in this disease and graft-versushost disease. The development of gene therapy aimed at restoring β-globin synthesis or inducing fetal hemoglobin expression offers prospects for functional cure without the need for allogeneic hematopoietic stem cell transplantation, overcoming many of its limitations, including the lack of an optimal donor, graft-versus-host disease, and graft rejection. This review provides an analysis of existing treatment methods, their limitations, and the potential for clinical application of gene therapy in β-thalassemia.
About the Authors
E. N. DolgushinaRussian Federation
Hematologist, Department of Bone Marrow Transplantation for Children with Rare Diseases
Web of Science ResearcherID: OIT-2953-2025
6–8 Lev Tolstoy St., Saint Petersburg, 197022
O. S. Kopteva
Russian Federation
Laboratory Assistant, Junior Researcher, Laboratory of Gene and Cell Therapy
Web of Science ResearcherID: HPF-2919-2023
6–8 Lev Tolstoy St., Saint Petersburg, 197022
A. I. Shakirova
Russian Federation
Cand. of Sci. (Biol.), Head of the Laboratory of Gene and Cell Therapy
Web of Science ResearcherID: N-8839-2017
6–8 Lev Tolstoy St., Saint Petersburg, 197022
K. V. Lepik
Russian Federation
Cand. of Sci. (Med.), Head of the Biotechnology Department
Web of Science ResearcherID: Q-2596-2017
6–8 Lev Tolstoy St., Saint Petersburg, 197022
T. A. Bykova
Russian Federation
Cand. of Sci. (Med.), Deputy Director for Pediatrics
Web of Science ResearcherID: AAH-9770-2021
6–8 Lev Tolstoy St., Saint Petersburg, 197022
L. S. Zubarovskaya
Russian Federation
Dr. of Sci. (Med.), Professor, Deputy Director for Transplantation
Web of Science ResearcherID: ABC-8759-2021
6–8 Lev Tolstoy St., Saint Petersburg, 197022
A. D. Kulagin
Russian Federation
Dr. of Sci. (Med.), Professor, Director
Web of Science ResearcherID: L-9795-2014
6–8 Lev Tolstoy St., Saint Petersburg, 197022
References
1. Kattamis A., Forni G. L., Aydinok Y., Viprakasit V. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol. 2020;105(6):692–703. doi: 10.1111/ejh.13512. PMID: 32886826.
2. Regional desk review of haemoglobinopathies with an emphasis on thalassaemia and accessibility and availability of safe blood and blood products as per these patients’ requirement in South-East Asia under universal health coverage [Electronic resource]. URL: https://www.who.int/publications/i/item/9789290228516 (appeal date 20.10.2025).
3. Khachaturyan A.G., Nazarov V.D., Dubina I.A., Lapin S.V., Sidorenko D.V., Vilgelmi A.A., Pervakova M.Yu., Emanuel V.L. On the relevance of molecular genetic diagnosis of β-thalassemia in the Russian Federation. Russian Journal of Pediatric Hematology and Oncology. 2024;11(4):89–97. (In Russ.)].
4. Sankaran V.G., Orkin S.H. The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med. 2013;3(1):а011643. doi: 10.1101/cshperspect.a011643. PMID: 23209159.
5. Farmakis D., Porter J., Taher A., Domenica Cappellini M., Angastiniotis M., Eleftheriou A. 2021 Thalassaemia international federation guidelines for the management of transfusion-dependent thalassemia. Hemasphere. 2022;6(8):e732. doi: 10.1097/HS9.0000000000000732. PMID: 35928543.
6. Jaing T.H., Chang T.Y., Chen S.H., Lin C.W., Wen Y.C., Chiu C.C. Molecular genetics of β-thalassemia: a narrative review. Medicine (Baltimore). 2021;100(45):e27522. doi: 10.1097/MD.0000000000027522.
7. Musallam K.M., Vitrano A., Meloni A., Addario Pollina S., Di Marco V., Hussain Ansari S., Filosa A., Ricchi P., Ceci A., Daar S., Vlachaki E., Singer S.T., Naserullah Z.A., Pepe A., Scondotto S., Dardanoni G., Karimi M., El-Beshlawy A., Hajipour M., Bonifazi F., Vichinsky E., Taher A.T., Sankaran V.G., Maggio A.; International Working Group on Thalassemia (IWG-THAL). Primary HBB gene mutation severity and long-term outcomes in a global cohort of β-thalassaemia. Br J Haematol. 2022;196(2):414–23. doi: 10.1111/bjh.17897. PMID: 34697800.
8. Saliba A.N., Musallam K.M., Taher A.T. How I treat non-transfusiondependent β-thalassemia. Blood. 2023;142(11):949–60. doi: 10.1182/blood.2023020683. PMID: 37478396.
9. Cao A., Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76. doi: 10.1097/GIM.0b013e3181cd68ed. PMID: 20098328.
10. Lekawanvijit S., Chattipakorn N. Iron overload thalassemic cardiomyopathy: iron status assessment and mechanisms of mechanical and electrical disturbance due to iron toxicity. Can J Cardiol. 2009;25(4):213–21. doi: 10.1016/s0828-282x(09)70064-9. PMID: 19340344.
11. Borgna-Pignatti C., Vergine G., Lombardo T., Cappellini M.D., Cianciulli P., Maggio A., Renda D., Lai M.E., Mandas A., Forni G., Piga A., Bisconte M.G. Hepatocellular carcinoma in the thalassaemia syndromes. Br J Haematol. 2004;124(1):114–7. doi: 10.1046/j.1365-2141.2003.04732.x. PMID: 14675416.
12. Borgna-Pignatti C., Rugolotto S., De Stefano P., Zhao H., Cappellini M.D., Del Vecchio G.C., Romeo M.A., Forni G.L., Gamberini M.R., Ghilardi R., Piga A., Cnaan A. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–93. PMID: 15477202.
13. Cappellini M.D., Cohen A., Porter J. Guidelines for the management of transfusion dependent thalassaemia. 3rd ed. Nicosia Thalass Int Fed. [Internet]. 2014.
14. Porter J.B. Practical management of iron overload. Br J Haematol. 2001;115(2):239–52. doi: 10.1046/j.1365-2141.2001.03195.x. PMID: 11703317.
15. Taher A.T., Musallam K.M., Cappellini M.D. β-thalassemias. N Engl J Med. 2021;384(8):727–43. doi: 10.1056/NEJMra2021838. PMID: 33626255.
16. Ali S., Mumtaz S., Shakir H.A., Khan M., Tahir H.M., Mumtaz S., Mughal T.A., Hassan A., Kazmi S.A.R., Sadia, Irfan M., Khan M.A. Current status of beta-thalassemia and its treatment strategies. Mol Genet Genomic Med. 2021;9(12):e1788. doi: 10.1002/mgg3.1788. Epub 2021 Nov 5. PMID: 34738740.
17. Ruivard M., Lobbes H. Diagnosis and treatment of iron overload. La Rev. Médecine Interne. 2023;44(12):656–61. doi: 10.1016/j. revmed.2023.07.002. Epub 2023 Jul 26. PMID: 37507250.
18. Taher A.T., Cappellini M.D. How I manage medical complications of β-thalassemia in adults. Blood. 2018;132(17):1781–91. doi: 10.1182/blood-2018-06-818187. Epub 2018 Sep 11. PMID: 30206117.
19. Bajwa H., Basit H. Thalassemia. StatPearls [Internet]. 2025.
20. Dragomir M., Petrescu D.G.E., Manga G.E., Călin G.A., Vasilescu C. Patients after splenectomy: old risks and new perspectives. Chirurgia (Bucur). 2016;111(5):393–9. doi: 10.21614/chirurgia.111.5.393. PMID: 27819637.
21. Theocharaki K., Anastasiadi A.T., Delicou S., Tzounakas V.L., Barla I., Rouvela S., Kazolia E., Tzafa G., Mpekoulis G., Gousdovas T., Pavlou E., Kostopoulos I.V., Velentzas A.D., Simantiris N., Xydaki A., Vassilaki N., Voskaridou E., Aggeli I.K., Nomikou E., Tsitsilonis O., Papageorgiou E., Thomaidis N., Gikas E., Politou M., Komninaka V., Antonelou M.H. Cellular and biochemical heterogeneity contributes to the phenotypic diversity of transfusiondependent β-thalassemia. Blood Adv. 2025;9(9):2091–107. doi: 10.1182/bloodadvances.2024015232. PMID: 39928952.
22. Bacon E.R., Dalyot N., Filon D., Schreiber L., Rachmilewitz E.A., Oppenheim A. Hemoglobin switching in humans is accompanied by changes in the ratio of the transcription factors, GATA-1 and SP1. Mol Med. 1995;1(3):297–305. doi: 10.1007/BF03401554. PMID: 8529108.
23. Huang T., Jiang H., Tang G., Li J., Huang X., Huang Z., Zhang H. Effi cacy and safety of hydroxyurea therapy on patients with β-thalassemia: a systematic review and meta-analysis. Front Med (Lausanne). 2025;11:1480831. doi: 10.3389/fmed.2024.1480831. PMID: 39882530.
24. Markham A. Luspatercept: fi rst approval. Drugs. 2020;80(1):85–90. doi: 10.1007/s40265-019-01251-5. PMID: 31939073.
25. Musallam K.M., Sheth S., Cappellini M.D., Kattamis A., Kuo K.H.M., Taher A.T. Luspatercept for transfusion-dependent β-thalassemia: time to get real. Ther Adv Hematol. 2023;14:20406207231195594. doi: 10.1177/20406207231195594. PMID: 37645382.
26. Cappellini M.D., Viprakasit V., Taher A.T., Georgiev P., Kuo K.H.M., Coates T., Voskaridou E., Liew H.K., Pazgal-Kobrowski I., Forni G.L., Perrotta S., Khelif A., Lal A., Kattamis A., Vlachaki E., Origa R., Aydinok Y., Bejaoui M., Ho P.J., Chew L.P., Bee P.C., Lim S.M., Lu M.Y., Tantiworawit A., Ganeva P., Gercheva L., Shah F., Neufeld E.J., Thompson A., Laadem A., Shetty J.K., Zou J., Zhang J., Miteva D., Zinger T, Linde P.G., Sherman M.L., Hermine O., Porter J., Piga A.; BELIEVE Investigators. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2020;382(13):1219–31. doi: 10.1056/NEJMoa1910182. PMID: 32212518.
27. Baronciani D., Angelucci E., Potschger U., Gaziev J., Yesilipek A., Zecca M., Orofi no M.G., Giardini C., Al-Ahmari A., Marktel S., de la Fuente J., Ghavamzadeh A., Hussein A.A., Targhetta C., Pilo F., Locatelli F., Dini G., Bader P., Peters C. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant. 2016;51(4):536–41. doi: 10.1038/bmt.2015.293. Epub 2016 Jan 11. PMID: 26752139.
28. Vellaichamy Swaminathan V., Ravichandran N., Ramanan K.M., Meena S.K., Varla H., Ramakrishnan B., Jayakumar I., Uppuluri R., Raj R. Augmented immunosuppression and PTCY-based haploidentical hematopoietic stem cell transplantation for thalassemia major. Pediatr Transplant. 2021;25(2):e13893. doi: 10.1111/petr.13893. PMID: 33111490.
29. Khandelwal P., Yeh R.F., Yu L., Lane A., Dandoy C.E., El-Bietar J., Davies S.M., Grimley M.S. Graft-versus-host disease prophylaxis with abatacept reduces severe acute graft-versus-host disease in allogeneic hematopoietic stem cell transplant for beta-thalassemia major with busulfan, fl udarabine, and thiotepa. Transplantation. 2021;105(4):891–6. doi: 10.1097/TP.0000000000003327. PMID: 32467478.
30. Lüftinger R., Zubarovskaya N., Galimard J.E., Cseh A., Salzer E., Locatelli F., Algeri M., Yesilipek A., de la Fuente J., Isgrò A., Alseraihy A., Angelucci E., Smiers F.J., La La Nasa G., Zecca M., Fisgin T., Unal E., Kleinschmidt K., Peters C., Lankester A., Corbacioglu S.; EBMT Pediatric Diseases, Inborn Errors Working Parties. Busulfan–fl udarabine- or treosulfan–fl udarabine-based myeloablative conditioning for children with thalassemia major. Ann Hematol. 2022;101(3):655–65. doi: 10.1007/s00277-021-04732-4. PMID: 34999929.
31. Peters C. Allogeneic hematopoietic stem cell transplantation to cure transfusion-dependent thalassemia: timing matters! Biol Blood Marrow Transpl. 2018;24(6):1107–8. doi: 10.1016/j.bbmt.2018.04.023. PMID: 29704543.
32. Mulas O., Mola B., Caocci G., La Nasa G. Conditioning regimens in patients with β-thalassemia who underwent hematopoietic stem cell transplantation: a scoping review. J Clin Med. 2022;11(4):907. doi: 10.3390/jcm11040907. PMID: 35207178.
33. Mathews V., George B., Deotare U., Lakshmi K.M., Viswabandya A., Daniel D., Chandy M., Srivastava A. A new stratifi cation strategy that identifi es a subset of class III patients with an adverse prognosis among children with beta thalassemia major undergoing a matched related allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2007;13(8):889–94. doi: 10.1016/j.bbmt.2007.05.004. PMID: 17640592.
34. Bernardo M.E., Piras E., Vacca A., Giorgiani G., Zecca M., Bertaina A., Pagliara D., Contoli B., Pinto R.M., Caocci G., Mastronuzzi A., La Nasa G., Locatelli F. Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reducedtoxicity conditioning regimen based on the use of treosulfan. Blood. 2012;120(2):473–6. doi: 10.1182/blood-2012-04-423822. PMID: 22645178.
35. Dzierzak E.A., Papayannopoulou T., Mulligan R.C. Lineage-specifi c expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature. 1988;331(6151):35–41. doi: 10.1038/331035a0. PMID: 2893284.
36. Ellis J., Pasceri P., Tan-Un K.C., Wu X., Harper A., Fraser P., Grosveld F. Evaluation of beta-globin gene therapy constructs in single copy transgenic mice. Nucleic Acids Res. 1997;25(6):1296–302. doi: 10.1093/nar/25.6.1296. PMID: 9092642.
37. May C., Rivella S., Callegari J., Heller G., Gaensler K.M., Luzzatto L., Sadelain M. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406(6791):82–6. doi: 10.1038/35017565. PMID: 10894546.
38. Persons D.A., Hargrove P.W., Allay E.R., Hanawa H., Nienhuis A.W. The degree of phenotypic correction of murine beta-thalassemia intermedia following lentiviral-mediated transfer of a human gammaglobin gene is infl uenced by chromosomal position eff ects and vector copy number. Blood. 2003;101(6):2175–83. doi: 10.1182/blood-2002-07-2211. PMID: 12411297.
39. Imren S., Payen E., Westerman K.A., Pawliuk R., Fabry M.E., Eaves C.J., Cavilla B., Wadsworth L.D., Beuzard Y., Bouhassira E.E., Russell R., London I.M., Nagel R.L., Leboulch P., Humphries R.K. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A. 2002;99(22):14380–5. doi: 10.1073/pnas.212507099. PMID: 12391330.
40. Negre O., Eggimann A.V., Beuzard Y., Ribeil J.A., Bourget P., Borwornpinyo S., Hongeng S., Hacein-Bey S., Cavazzana M., Leboulch P., Payen E. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β(A(T87Q))-globin gene. Hum Gene Ther. 2016;27(2):148–65. doi: 10.1089/hum.2016.007. PMID: 26886832.
41. Cavazzana-Calvo M., Payen E., Negre O., Wang G., Hehir K., Fusil F., Down J., Denaro M., Brady T., Westerman K., Cavallesco R., Gillet-Legrand B., Caccavelli L., Sgarra R., Maouche-Chrétien L., Bernaudin F., Girot R., Dorazio R., Mulder G.J., Polack A., Bank A., Soulier J., Larghero J., Kabbara N., Dalle B., Gourmel B., Socie G., Chrétien S., Cartier N., Aubourg P., Fischer A., Cornetta K., Galacteros F., Beuzard Y., Gluckman E., Bushman F., Hacein-BeyAbina S., Leboulch P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010;467(7313):318–22. doi: 10.1038/nature09328. PMID: 20844535.
42. Thompson A.A., Walters M.C., Kwiatkowski J., Rasko J.E.J., Ribeil J.A., Hongeng S., Magrin E., Schiller G.J., Payen E., Semeraro M., Moshous D., Lefrere F., Puy H., Bourget P., Magnani A., Caccavelli L., Diana J.S., Suarez F., Monpoux F., Brousse V., Poirot C., Brouzes C., Meritet J.F., Pondarré C., Beuzard Y., Chrétien S., Lefebvre T., Teachey D.T., Anurathapan U., Ho P.J., von Kalle C., Kletzel M., Vichinsky E., Soni S., Veres G., Negre O., Ross R.W., Davidson D., Petrusich A., Sandler L., Asmal M., Hermine O., De Montalembert M., Hacein-Bey-Abina S., Blanche S., Leboulch P., Cavazzana M. Gene therapy in patients with transfusiondependent β-thalassemia. N Engl J Med. 2018;378(16):1479–93. doi: 10.1056/NEJMoa1705342. PMID: 29669226.
43. Locatelli F., Thompson A.A., Kwiatkowski J.L., Porter J.B., Thrasher A.J., Hongeng S., Sauer M.G., Thuret I., Lal A., Algeri M., Schneiderman J., Olson T.S., Carpenter B., Amrolia P.J., Anurathapan U., Schambach A., Chabannon C., Schmidt M., Labik I., Elliot H., Guo R., Asmal M., Colvin R.A., Walters M.C. Betibeglogene autotemcel gene therapy for non-β0/β0 genotype β-thalassemia. N Engl J Med. 2022;386(5):415–27. doi: 10.1056/NEJMoa2113206. PMID: 34891223.
44. Kwiatkowski J.L., Walters M.C., Hongeng S., Yannaki E., Kulozik A.E., Kunz J.B., Sauer M.G., Thrasher A.J., Thuret I., Lal A., Tao G., Ali S., Thakar H.L., Elliot H., Lodaya A., Lee J., Colvin R.A., Locatelli F., Thompson A.A. Betibeglogene autotemcel gene therapy in patients with transfusion-dependent, severe genotype β-thalassaemia (HGB-212): a non-randomised, multicentre, single-arm, open-label, single-dose, phase 3 trial. Lancet. 2024;404(10468):2175–86. doi: 10.1016/S0140-6736(24)01884-1. PMID: 39527960.
45. Rubin R. New gene therapy for β-thalassemia. JAMA. 2022;328(11):1030. doi: 10.1001/jama.2022.14709. PMID: 36125483.
46. Pflaum (Kempler) C. FDA approves fi rst gene therapies to treat patients with sickle cell disease [Electronic resource]. FDA News Release. 2023. URL: https://www.fda.gov/news-events/pressannouncements/fda-approves-fi rst-gene-therapies-treat-patientssickle-cell-disease.
47. Kiem H.P., Rumugam P., Christopher B., Adair J.E., Beard B.C., Fox C., Malik P. Safety of a gamma globin expressing lentivirus vector in a non-human primate model for gene therapy of sickle cell disease. Blood. 2013;122(21):2896. doi: 10.1182/blood.V122.21.2896.2896.
48. Drakopoulou E., Georgomanoli M., Lederer C.W., Panetsos F., Kleanthous M., Voskaridou E., Valakos D., Papanikolaou E., Anagnou N.P. The optimized γ-globin lentiviral vector GGHI-mB-3D leads to nearly therapeutic HbF levels in vitro in CD34+ cells from sickle cell disease patients. Viruses. 2022;14(12):2716. doi: 10.3390/v14122716. PMID: 36560719.
49. Shen Y., Li R., Teichert K., Montbleau K.E., Verboon J.M., Voit R.A., Sankaran V.G. Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing. PLoS Genet. 2021;17(10):e1009835. doi: 10.1371/journal.pgen.1009835. PMID: 34634037.
50. Krivega I., Dean A. LDB1-mediated enhancer looping can be established independent of mediator and cohesin. Nucleic Acids Res. 2017;45(14):8255–68. doi: 10.1093/nar/gkx433. PMID: 28520978.
51. Doerfl er P.A., Feng R., Li Y., Palmer L.E., Porter S.N., Bell H.W., Crossley M., Pruett-Miller S.M., Cheng Y., Weiss M.J. Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nat Genet. 2021;53(8):1177–86. doi: 10.1038/s41588-021-00904-0. PMID: 34341563.
52. Han Y., Tan X., Jin T., Zhao S., Hu L., Zhang W., Kurita R., Nakamura Y., Liu J., Li D., Zhang Z., Fang X., Huang S. CRISPR/ Cas9-based multiplex genome editing of BCL11A and HBG effi ciently induces fetal hemoglobin expression. Eur J Pharmacol. 2022;918:174788. doi: 10.1016/j.ejphar.2022.174788. PMID: 35093321.
53. Liu N., Hargreaves V.V., Zhu Q., Kurland J.V., Hong J., Kim W., Sher F., Macias-Trevino C., Rogers J.M., Kurita R., Nakamura Y., Yuan G.C., Bauer D.E., Xu J., Bulyk M.L., Orkin S.H. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell. 2018;173(2):430–42.e17. doi: 10.1016/j.cell.2018.03.016. PMID: 29606353.
54. Martyn G.E., Wienert B., Yang L., Shah M., Norton L.J., Burdach J., Kurita R., Nakamura Y., Pearson R.C.M., Funnell A.P.W., Quinlan K.G.R., Crossley M. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet. 2018;50(4):498–503. doi: 10.1038/s41588-018-0085-0. PMID: 29610478.
55. Traxler E.A., Yao Y., Wang Y.D., Woodard K.J., Kurita R., Nakamura Y., Hughes J.R., Hardison R.C., Blobel G.A., Li C., Weiss M.J. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22(9):987–90. doi: 10.1038/nm.4170. PMID: 27525524.
56. Wollenschlaeger C., Meneghini V., Masson C., De Cian A., Chalumeau A., Mavilio F., Amendola M., Andre-Schmutz I., Cereseto A., El Nemer W., Concordet J.P., Giovannangeli C., Cavazzana M., Miccio A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv. 2020;6(7):eaay9392. doi: 10.1126/sciadv.aay9392. PMID: 32917636.
57. Métais J.Y., Doerfl er P.A., Mayuranathan T., Bauer D.E., Fowler S.C., Hsieh M.M., Katta V., Keriwala S., Lazzarotto C.R., Luk K., Neel M.D., Perry S.S., Peters S.T., Porter S.N., Ryu B.Y., Sharma A., Shea D., Tisdale J.F., Uchida N., Wolfe S.A., Woodard K.J., Wu Y., Yao Y., Zeng J., Pruett-Miller S., Tsai S.Q., Weiss M.J. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 2019;3(21):3379–92. doi: 10.1182/bloodadvances.2019000820. PMID: 31698466.
58. Sharma A., Boelens J.J., Cancio M., Hankins J.S., Bhad P., Azizy M., Lewandowski A., Zhao X., Chitnis S., Peddinti R., Zheng Y., Kapoor N., Ciceri F., Maclachlan T., Yang Y., Liu Y., Yuan J., Naumann U., Yu V.W.C., Stevenson S.C., De Vita S., LaBelle J.L. CRISPR-Cas9 editing of the HBG1 and HBG2 promoters to treat sickle cell disease. N Engl J Med. 2023;389(9):820–32. doi: 10.1056/NEJMoa2215643. PMID: 37646679.
59. Bauer D.E., Kamran S.C., Lessard S., Xu J., Fujiwara Y., Lin C., Shao Z., Canver M.C., Smith E.C., Pinello L., Sabo P.J., Vierstra J., Voit R.A., Yuan G.C., Porteus M.H., Stamatoyannopoulos J.A., Lettre G., Orkin S.H. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253–7. doi: 10.1126/science.1242088. PMID: 24115442.
60. Gamage U., Warnakulasuriya K., Hansika S., Silva G.N. CRISPR gene therapy: a promising one-time therapeutic approach for transfusiondependent β-thalassemia – CRISPR-Cas9 gene editing for β-thalassemia. Thalass Rep. 2023;13:51–69. doi: 10.3390/thalassrep13010006.
61. Holmes M.C., Reik A., Rebar E.J., Miller J.C., Zhou Y., Zhang L., Li P., Vaidya S. A potential therapy for beta-thalassemia (ST-400) and sickle cell disease (BIVV003). Biol Blood Marrow Transplant. 2018;24(3):172. doi: 10.1016/j.bbmt.2017.12.105.
62. Walters M.C., Smith A.R., Schiller G.J., Esrick E.B., Williams D.A., Gogoleva T., Rouy D., Cockroft B.M., Vercellotti G.M. Updated Results of a Phase 1/2 clinical study of zinc fi nger nuclease-mediated editing of BCL11A in autologous hematopoietic stem cells for transfusion-dependent beta thalassemia. Blood. 2021;138(1):3974. doi: 10.1182/blood-2021-147907.
63. Frangoul H., Altshuler D., Cappellini M.D., Chen Y.S., Domm J., Eustace B.K., Foell J., de la Fuente J., Grupp S., Handgretinger R., Ho T.W., Kattamis A., Kernytsky A., Lekstrom-Himes J., Li A.M., Locatelli F., Mapara M.Y., de Montalembert M., Rondelli D., Sharma A., Sheth S., Soni S., Steinberg M.H., Wall D., Yen A., Corbacioglu S. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. doi: 10.1056/NEJMoa2031054. PMID: 33283989.
64. Frangoul H., Locatelli F., Sharma A., Bhatia M., Mapara M., Molinari L., Wall D., Liem R.I., Telfer P., Shah A.J., Cavazzana M., Corbacioglu S., Rondelli D., Meisel R., Dedeken L., Lobitz S., de Montalembert M., Steinberg M.H., Walters M.C., Eckrich M.J., Imren S., Bower L., Simard C., Zhou W., Xuan F., Morrow P.K., Hobbs W.E., Grupp S.A.; CLIMB SCD-121 Study Group. Exagamglogene autotemcel for severe sickle cell disease. N Engl J Med. 2024;390(18):1649–62. doi: 10.1056/NEJMoa2309676. PMID: 38661449.
65. Frangoul H., Locatelli F., Lang P., Meisel R., Wall D., Corbacioglu S., Li A., de la Fuente J., Shah A.J., Carpenter B., Kwiatkowski J.L., Mapara M., Liem R., Capellini M.D., Algeri M., Kattamis A., Sheth S., Grupp S.A., Merkeley H., Kuo K.H.M., Rupprecht J., Kohli P., Xu G., Ross L., Tong B., Hobbs W. Durable clinical benefi ts in transfusion-dependent beta-talassemia with Exagamglogene autotemcel. Transplant Cell Ther. 2025;31(2):252. doi: 10.1016/j.jtct.2025.01.383.
66. Hanna R., Frangoul H., McKinney C., Pineiro L., Mapara M., Dalal J., Chang K.-H., Jaskolka M., Kim K., Farrington D.L., Wally M., Mei B., Lawal A., Afonja O.O., Walters M.C. AsCas12a gene editing of HBG1/2 promoters with EDIT-301 results in rapid and sustained normalization of hemoglobin and increased fetal hemoglobin in patients with severe sickle cell disease and transfusion-dependent beta-thalassemia. Blood. 2023;142(1):4996. doi: 10.1182/blood-2023-187397.
67. Frangoul H., Hanna R., Walters M.C., Chang K.-H., Jaskolka M., Kim K., Yu Q., Badamosi N., Mei B., Afonja O., Thompson A. ReniCel, an investigational AsCas12a gene-edited cell medicine, led to successful engraftment, increased hemoglobin, and reduced transfusion dependence in patients with transfusion dependent betathalassemia treated in the edithal trial. Transplant Cell Ther. 2025;31(2):254–5.
68. Pyatiizbyantsev T.A., Shakirova A.I., Sergeev V.S., Lepik K.V., Popova M.O., Kulagin A.D. A novel programmable nuclease eBCL11A-FMPU-TALEN for gene therapy of sickle cell disease and β-thalassemia. Gematologiya i transfuziologiya = Hematology and Transfusiology. 2024;69(Suppl 2). (In Russ.)].
69. Frangoul H., Stults A., Bruce K., Domm J., Carroll C., Aide S., Duckworth M., Evans M., McManus M. Best Practices in gene therapy for sickle cell disease and transfusion-dependent β-thalassemia. Transplant Cell Ther. 2025;31(6):352.e1–10. doi: 10.1016/j.jtct.2025.02.025.
Review
For citations:
Dolgushina E.N., Kopteva O.S., Shakirova A.I., Lepik K.V., Bykova T.A., Zubarovskaya L.S., Kulagin A.D. Modern therapeutic approaches for β-thalassemia: from blood transfusion to gene therapy. Russian Journal of Pediatric Hematology and Oncology. 2025;12(4):56-67. (In Russ.) https://doi.org/10.21682/2311-1267-2025-12-3-56-67
JATS XML


























