Preview

Российский журнал детской гематологии и онкологии (РЖДГиО)

Расширенный поиск

Индивидуализированная терапия нейробластомы

https://doi.org/10.17650/2311-1267-2016-3-4-36-47

Аннотация

Нейробластома (НБ) – злокачественная эмбриональная опухоль детского возраста, характеризующаяся возможностью развития спонтанной регрессии у пациентов группы низкого риска или регрессии опухоли после проведения низкодозовой полихимиотерапии.
В отличие от больных указанной группы большинство пациентов группы высокого риска имеют крайне неблагоприятный прогноз, несмотря на проведение интенсивной мультимодальной терапии. Поэтому НБ является идеальной моделью для внедрения индивидуализированных терапевтических подходов. В течение многих лет пациентам с НБ проводилось риск-адаптированное лечение в соответствии с клиническими характеристиками заболевания и молекулярными особенностями опухоли на момент постановки диагноза.
В последнее время все большее значение приобретает внедрение подходов терапии, основанных на модификации лечения при проведении оценки ответа на проводимую терапию, а также использование таргетной молекулярной терапии, направленной против определенных молекулярно-генетических аномалий. Однако каждый терапевтический подход должен основываться на проспективных клинических исследованиях.

Об авторах

Т. Симон
Отделение детской онкологии и гематологии, Детская больница, Кельнский университет
Германия
Кельн, Германия


М. Фишер
Отделение экспериментальной детской онкологии, Кельнский университет
Германия
Кельн, Германия


Б. Херо
Отделение детской онкологии и гематологии, Детская больница, Кельнский университет
Германия
Кельн, Германия


Список литературы

1. Cohn, S.L., A.D. Pearson, W.B. London, et al., The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 289-97.

2. London, W.B., L. Boni, T. Simon, et al., The role of age in neuroblastoma risk stratification: the German, Italian, and children's oncology group perspectives. Cancer Lett, 2005. 228(1-2): p. 257-66.

3. Maris, J.M., M.J. Weiss, C. Guo, et al., Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study. J Clin Oncol, 2000. 18(9): p. 1888-99.

4. Simon, T., R. Spitz, A. Faldum, et al., New definition of low-risk neuroblastoma using stage, age, and 1p and MYCN status. J Pediatr Hematol Oncol, 2004. 26(12): p. 791-6.

5. Caron, H., P. van Sluis, J. de Kraker, et al., Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med, 1996. 334(4): p. 225-30.

6. Shimada, H., I.M. Ambros, L.P. Dehner, et al., Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer, 1999. 86(2): p. 349-63.

7. Shimada, H., J. Chatten, W.A. Newton, Jr., et al., Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst, 1984. 73(2): p. 405-16.

8. George, R.E., S. Li, C. MedeirosNancarrow, et al., High-risk neuroblastoma treated with tandem autologous peripheralblood stem cell-supported transplantation: long-term survival update. J Clin Oncol, 2006. 24(18): p. 2891-6.

9. Matthay, K.K., C.P. Reynolds, R.C. Seeger, et al., Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cisretinoic acid: a children's oncology group study. J Clin Oncol, 2009. 27(7): p. 1007-13.

10. Spitz, R., B. Hero, T. Simon, et al., Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res, 2006. 12(11 Pt 1): p. 3368-73.

11. Attiyeh, E.F., W.B. London, Y.P. Mosse, et al., Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med, 2005. 353(21): p. 2243-53.

12. Bown, N., S. Cotterill, M. Lastowska, et al., Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med, 1999. 340(25): p. 1954-61.

13. Lastowska, M., S. Cotterill, N. Bown, et al., Breakpoint position on 17q identifies the most aggressive neuroblastoma tumors. Genes Chromosomes Cancer, 2002. 34(4): p. 428-36.

14. Brodeur, G.M., J.E. Minturn, R. Ho, et al., Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res, 2009. 15(10): p. 3244-50.

15. Nakagawara, A., M. ArimaNakagawara, N.J. Scavarda, et al., Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med, 1993. 328(12): p. 847-54.

16. Brodeur, G.M., TRK-a expression in neuroblastomas: a new prognostic marker with biological and clinical significance. J Natl Cancer Inst, 1993. 85(5): p. 344-5.

17. Opel, D., C. Poremba, T. Simon, et al., Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res, 2007. 67(2): p. 735-45.

18. Oberthuer, A., B. Hero, F. Berthold, et al., Prognostic impact of gene expressionbased classification for neuroblastoma. J Clin Oncol, 2010. 28(21): p. 3506-15.

19. Asgharzadeh, S., R. Pique-Regi, R. Sposto, et al., Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst, 2006. 98(17): p. 1193-203.

20. Ohira, M., S. Oba, Y. Nakamura, et al., Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell, 2005. 7(4): p. 337-50.

21. Oberthuer, A., F. Berthold, P. Warnat, et al., Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol, 2006. 24(31): p. 5070-8.

22. Janoueix-Lerosey, I., G. Schleiermacher, E. Michels, et al., Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol, 2009. 27(7): p. 1026-33.

23. Spitz, R., A. Oberthuer, M. Zapatka, et al., Oligonucleotide array-based comparative genomic hybridization (aCGH) of 90 neuroblastomas reveals aberration patterns closely associated with relapse pattern and outcome. Genes Chromosomes Cancer, 2006. 45(12): p. 1130-42.

24. Brodeur, G.M., J. Pritchard, F. Berthold, et al., Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol, 1993. 11(8): p. 1466-77.

25. Monclair, T., G.M. Brodeur, P.F. Ambros, et al., The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303.

26. De Bernardi, B., M. Gerrard, L. Boni, et al., Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J Clin Oncol, 2009. 27(7): p. 1034-40.

27. Hero, B., T. Simon, R. Spitz, et al., Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J Clin Oncol, 2008. 26(9): p. 1504-10.

28. Rubie, H., B. De Bernardi, M. Gerrard, et al., Excellent outcome with reduced treatment in infants with nonmetastatic and unresectable neuroblastoma without MYCN amplification: results of the prospective INES 99.1. J Clin Oncol, 2011. 29(4): p. 449-55.

29. Schleiermacher, G., V. Mosseri, W.B. London, et al., Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer, 2012. 107(8): p. 1418-22.

30. Oberthuer, A., D. Juraeva, B. Hero, et al., Revised risk estimation and treatment stratification of low- and intermediate-risk neuroblastoma patients by integrating clinical and molecular prognostic markers. Clin Cancer Res, 2015. 21(8): p. 1904-15.

31. Carlsen, N.L., Neuroblastoma: epidemiology and pattern of regression. Problems in interpreting results of mass screening. Am J Pediatr Hematol Oncol, 1992. 14(2): p. 103-10.

32. Cheung, N.K., B.H. Kushner, M.P. LaQuaglia, et al., Survival from non-stage 4 neuroblastoma without cytotoxic therapy: an analysis of clinical and biological markers. Eur J Cancer, 1997. 33(12): p. 2117-20.

33. Kushner, B.H., N.K. Cheung, M.P. LaQuaglia, et al., Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy. J Clin Oncol, 1996. 14(2): p. 373-81.

34. Evans, A.E., J. Gerson, and L. Schnaufer, Spontaneous regression of neuroblastoma. Natl Cancer Inst Monogr, 1976. 44: p. 49-54.

35. Schilling, F.H., C. Spix, F. Berthold, et al., Neuroblastoma screening at one year of age. N Engl J Med, 2002. 346(14): p. 1047-53.

36. Pinto, N.R., M.A. Applebaum, S.L. Volchenboum, et al., Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J Clin Oncol, 2015. 33(27): p. 3008-17.

37. Bertolini, P., M. Lassalle, G. Mercier, et al., Platinum compound-related ototoxicity in children: long-term followup reveals continuous worsening of hearing loss. J Pediatr Hematol Oncol, 2004. 26(10): p. 649-55.

38. Simon, T., B. Hero, W. Dupuis, et al., The incidence of hearing impairment after successful treatment of neuroblastoma. Klin Padiatr, 2002. 214(4): p. 149-52.

39. Grewal, S., T. Merchant, R. Reymond, et al., Auditory late effects of childhood cancer therapy: a report from the Children's Oncology Group. Pediatrics, 2010. 125(4): p. e938-50.

40. Laverdiere, C., N.K. Cheung, B.H. Kushner, et al., Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer, 2005. 45(3): p. 324-32.

41. Bhandari, S., N.K. Cheung, B.H. Kushner, et al., Hypothyroidism after 131Imonoclonal antibody treatment of neuroblastoma. Pediatr Blood Cancer, 2010. 55(1): p. 76-80.

42. Benz-Bohm, G., B. Hero, A. Gossmann, et al., Focal nodular hyperplasia of the liver in longterm survivors of neuroblastoma: how much diagnostic imaging is necessary? Eur J Radiol, 2010. 74(3): p. e1-5.

43. Laverdiere, C., Q. Liu, Y. Yasui, et al., Long-term outcomes in survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst, 2009. 101(16): p. 1131-40.

44. Rubino, C., E. Adjadj, S. Guerin, et al., Long-term risk of second malignant neoplasms after neuroblastoma in childhood: role of treatment. Int J Cancer, 2003. 107(5): p. 791-6.

45. Bhatti, P., L.H. Veiga, C.M. Ronckers, et al., Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res, 2010. 174(6): p. 741-52.

46. Danner-Koptik, K.E., N.S. Majhail, R. Brazauskas, et al., Second malignancies after autologous hematopoietic cell transplantation in children. Bone Marrow Transplant, 2013. 48(3): p. 363-8.

47. Stutterheim, J., L. ZappeijKannegieter, R. Versteeg, et al., The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma. Eur J Cancer, 2011. 47(8): p. 1193-202.

48. Cheung, I.Y., Y. Feng, and N.K. Cheung, Early negative minimal residual disease in bone marrow after immunotherapy is less predictive of late or non-marrow relapse among patients with high-risk stage 4 neuroblastoma. Pediatr Blood Cancer, 2013. 60(7): p. E32-4.

49. Cai, J.Y., Y.J. Tang, L.M. Jiang, et al., Prognostic influence of minimal residual disease detected by flow cytometry and peripheral blood stem cell transplantation by CD34+ selection in childhood advanced neuroblastoma. Pediatr Blood Cancer, 2007. 49(7): p. 952-7.

50. Schmidt, M., T. Simon, B. Hero, et al., The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer, 2008. 44(11): p. 1552-8.

51. Decarolis, B., C. Schneider, B. Hero, et al., Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study. J Clin Oncol, 2013. 31(7): p. 944-51.

52. Matthay, K.K., V. Edeline, J. Lumbroso, et al., Correlation of early metastatic response by 123Imetaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol, 2003. 21(13): p. 2486-91.

53. Matthay, K.K., B. Shulkin, R. Ladenstein, et al., Criteria for evaluation of disease extent by (123)Imetaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer, 2010. 102(9): p. 1319-26.

54. Bagatell, R., K. McHugh, A. Naranjo, et al., Assessment of Primary Site Response in Children With High-Risk Neuroblastoma: An International Multicenter Study. J Clin Oncol, 2016. 34(7): p. 740-6.

55. Yu, A.L., A.L. Gilman, M.F. Ozkaynak, et al., Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med, 2010. 363(14): p. 1324-34.

56. Simon, T., B. Hero, A. Faldum, et al., Long term outcome of high-risk neuroblastoma patients after immunotherapy with antibody ch14.18 or oral metronomic chemotherapy. BMC Cancer, 2011. 11: p. 21.

57. Cheung, N.K., I.Y. Cheung, B.H. Kushner, et al., Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colonystimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol, 2012. 30(26): p. 3264-70.

58. Siebert, N., C. Eger, D. Seidel, et al., Pharmacokinetics and pharmacodynamics of ch14.18/CHO in relapsed/refractory high-risk neuroblastoma patients treated by long-term infusion in combination with IL-2. MAbs, 2016: p. 1-13.

59. Dickson, P.V., J.B. Hamner, T.L. Sims, et al., Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res, 2007. 13(13): p. 3942-50.

60. Segerstrom, L., D. Fuchs, U. Backman, et al., The anti-VEGF antibody bevacizumab potently reduces the growth rate of high-risk neuroblastoma xenografts. Pediatr Res, 2006. 60(5): p. 576-81.

61. Glade Bender, J.L., P.C. Adamson, J.M. Reid, et al., Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group Study. J Clin Oncol, 2008. 26(3): p. 399-405.

62. Glade Bender, J.L., A. Lee, J.M. Reid, et al., Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children's oncology group phase I consortium report. J Clin Oncol, 2013. 31(24): p. 3034-43.

63. Streby, K.A., N. Shah, M.A. Ranalli, et al., Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer, 2015. 62(1): p. 5-11.

64. George, S.L., N. Falzone, S. Chittenden, et al., Individualized 131ImIBG therapy in the management of refractory and relapsed neuroblastoma. Nucl Med Commun, 2016.

65. Schmidt, M., T. Simon, B. Hero, et al., Is there a benefit of 131 I-MIBG therapy in the treatment of children with stage 4 neuroblastoma? A retrospective evaluation of The German Neuroblastoma Trial NB97 and implications for The German Neuroblastoma Trial NB2004. Nuklearmedizin, 2006. 45(4): p. 145-51; quiz N39-40.

66. Kraal, K.C., G.A. Tytgat, B.L. van EckSmit, et al., Upfront treatment of high-risk neuroblastoma with a combination of 131IMIBG and topotecan. Pediatr Blood Cancer, 2015. 62(11): p. 1886-91.

67. de Kraker, J., K.A. Hoefnagel, A.C. Verschuur, et al., Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer, 2008. 44(4): p. 551-6.

68. Matthay, K.K., K. DeSantes, B. Hasegawa, et al., Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol, 1998. 16(1): p. 229-36.

69. Matthay, K.K., J.P. Huberty, R.S. Hattner, et al., Efficacy and safety of [131I] metaiodobenzylguanidine therapy for patients with refractory neuroblastoma. J Nucl Biol Med, 1991. 35(4): p. 244-7.

70. Eleveld, T.F., D.A. Oldridge, V. Bernard, et al., Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet, 2015. 47(8): p. 864-71.

71. Schramm, A., J. Koster, Y. Assenov, et al., Mutational dynamics between primary and relapse neuroblastomas. Nat Genet, 2015. 47(8): p. 872-7.

72. Woodfield, S.E., L. Zhang, K.A. Scorsone, et al., Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer, 2016. 16: p. 172.

73. Johnsen, J.I., L. Segerstrom, A. Orrego, et al., Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene, 2008. 27(20): p. 2910-22.

74. Kiessling, M.K., A. CurioniFontecedro, P. Samaras, et al., Targeting the mTOR Complex by Everolimus in NRAS Mutant Neuroblastoma. PLoS One, 2016. 11(1): p. e0147682.

75. Peirce, S.K., H.W. Findley, C. Prince, et al., The PI-3 kinase-Akt-MDM2-survivin signaling axis in high-risk neuroblastoma: a target for PI-3 kinase inhibitor intervention. Cancer Chemother Pharmacol, 2011. 68(2): p. 325-35.

76. Boller, D., A. Schramm, K.T. Doepfner, et al., Targeting the phosphoinositide 3-kinase isoform p110delta impairs growth and survival in neuroblastoma cells. Clin Cancer Res, 2008. 14(4): p. 1172-81.

77. Westhoff, M.A., G. Karpel-Massler, O. Bruhl, et al., A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. Mol Cell Ther, 2014. 2: p. 32.

78. Spunt, S.L., S.A. Grupp, T.A. Vik, et al., Phase I study of temsirolimus in pediatric patients with recurrent/refractory solid tumors. J Clin Oncol, 2011. 29(21): p. 2933-40.

79. Bagatell, R., R. Norris, A.M. Ingle, et al., Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a Children's Oncology Group Study. Pediatr Blood Cancer, 2014. 61(5): p. 833-9.

80. Pugh, T.J., O. Morozova, E.F. Attiyeh, et al., The genetic landscape of high-risk neuroblastoma. Nat Genet, 2013. 45(3): p. 279-84.

81. Peifer, M., F. Hertwig, F. Roels, et al., Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature, 2015. 526(7575): p. 700-4.

82. Mosse, Y.P., Anaplastic Lymphoma Kinase as a Cancer Target in Pediatric Malignancies. Clin Cancer Res, 2016 . 22(3): p. 546-52.

83. Mosse, Y.P., M. Laudenslager, L. Longo, et al., Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 2008. 455(7215): p. 930-5.

84. Mosse, Y.P., M.S. Lim, S.D. Voss, et al., Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol, 2013. 14(6): p. 472-80.

85. Schulte, J.H., S. Schulte, L.C. Heukamp, et al., Targeted Therapy for Neuroblastoma: ALK Inhibitors. Klin Padiatr, 2013. 225(6): p. 303-8.

86. Amin, A.D., L. Li, S.S. Rajan, et al., TKI sensitivity patterns of novel kinasedomain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors. Oncotarget, 2016.

87. Wang, Y., L. Wang, S. Guan, et al., Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Sci Rep, 2016. 6: p. 19423.

88. Puissant, A., S.M. Frumm, G. Alexe, et al., Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov, 2013. 3(3): p. 308-23.

89. Maris, J.M., Unholy matrimony: Aurora A and N-Myc as malignant partners in neuroblastoma. Cancer Cell, 2009. 15(1): p. 5-6.

90. Otto, T., S. Horn, M. Brockmann, et al., Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell, 2009. 15(1): p. 67-78.

91. Mosse, Y.P., E. Lipsitz, E. Fox, et al., Pediatric phase I trial and pharmacokinetic study of MLN8237, an investigational oral selective smallmolecule inhibitor of Aurora kinase A: a Children's Oncology Group Phase I Consortium study. Clin Cancer Res, 2012. 18(21): p. 6058-64.

92. DuBois, S.G., A. Marachelian, E. Fox, et al., Phase I Study of the Aurora A Kinase Inhibitor Alisertib in Combination With Irinotecan and Temozolomide for Patients With Relapsed or Refractory Neuroblastoma: A NANT (New Approaches to Neuroblastoma Therapy) Trial. J Clin Oncol, 2016. 34(12): p. 1368-75.

93. Mujoo, K., D.A. Cheresh, H.M. Yang, et al., Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res, 1987. 47(4): p. 1098-104.

94. Fakhari, M., D. Pullirsch, K. Paya, et al., Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma. J Pediatr Surg, 2002. 37(4): p. 582-7.

95. Eggert, A., N. Ikegaki, J. Kwiatkowski, et al., High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res, 2000. 6(5): p. 1900-8.


Рецензия

Для цитирования:


Симон Т., Фишер М., Херо Б. Индивидуализированная терапия нейробластомы. Российский журнал детской гематологии и онкологии (РЖДГиО). 2016;3(4):36-47. https://doi.org/10.17650/2311-1267-2016-3-4-36-47

For citation:


Simon T., Fischer M., Hero B. Individualized therapy in neuroblastoma. Russian Journal of Pediatric Hematology and Oncology. 2016;3(4):36-47. https://doi.org/10.17650/2311-1267-2016-3-4-36-47

Просмотров: 683


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X