Preview

Российский журнал детской гематологии и онкологии (РЖДГиО)

Расширенный поиск

Анемия Даймонда–Блекфана: модель трансляционного подхода к пониманию заболеваний у людей

https://doi.org/10.17650/2311-1267-2014-0-3-20-35

Полный текст:

Аннотация

Анемия Даймонда–Блекфана (АДБ) является врожденным синдромом костномозговой недостаточности. Как и в случае с другими редкими врожденными синдромами костномозговой недостаточности, это заболевание дает важные представления о биологии (а в случае с АДБ – о биологии рибосом), нарушение которой характерно для данного недуга. Таким образом, АДБ формирует парадигму развития трансляционной медицины, с помощью которой клиницисты обращаются к представителям науки для разработки способов лечения данного заболевания, а те, в свою очередь, способствуют клиническому применению открытий для улучшения результатов лечения. В данном обзоре мы расскажем об АДБ как клиническом синдроме и, в частности, продемонстрируем, как изучение АДБ позволило ученым сформировать возможности дальнейшего прогресса в понимании этого заболевания и его лечении.

Авторы перевода: К. И. Киргизов, Т. В. Шаманская

 

Об авторах

Адрианна Влахос
Медицинский исследовательский институт Фейнштейна
Соединённые Штаты Америки
Манхассет, Нью-Йорк, США


Л. Бланк
Школа медицины университета В.С. Хофстра
Соединённые Штаты Америки
Хемпстед, Нью-Йорк, США


Дж. М. Липтон
Детский медицинский центр Стивена и Александры Коэн
Соединённые Штаты Америки
Отдел гематологии/онкологии и трансплантации стволовых клеток, Нью-Гайд-Парк, Нью-Йорк, США


Список литературы

1. Josephs H. Anemia of infancy and early childhood. Medicine 1936;15:307.

2. Diamond L., Blackfan K. Hypoplastic anemia. Am J Dis Child 1938;56:464.

3. Young N., Alter B. Aplastic anemia: acquired and inherited. WB Saunders; Philadelphia, PA, USA: 1994.

4. Willig T. N., Niemeyer C. M., Leblanc T. et al. Identification of new prognosis factors from the clinical and epidemiologic analysis of a registry of 229 Diamond–Blackfan anemia patients. DBA group of Société d’Hématologie et d’Immunologie Pédiatrique(SHIP), Gesellshaft für Pädiatrische Onkologie und Hämatologie (GPOH), and the European Society for Pediatric Hematology and Immunology (ESPHI). Pediatr Res 1999;46(5):553–61.

5. Vlachos A., Klein G. W., Lipton J. M. The Diamond Blackfan Anemia Registry: tool for investigating the epidemiology and biology of Diamond–Blackfan anemia. J Pediatr Hematol Oncol 2001;23(6):377–82.

6. Orfali K. A., Ohene-Abuakwa Y., Ball S. E. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol 2004;125(2):243–52.

7. Ramenghi U., Garelli E., Valtolina S. et al. Diamond–Blackfan anaemia in the Italian population. Br J Haematol 1999;104(4):841–8.

8. Pospisilova D., Cmejlova J., Ludikova B. et al. The Czech National Diamond–Blackfan Anemia Registry: clinical data and ribosomal protein mutations update. Blood Cells Mol Dis 2012;48(4):209–18.

9. Kim S. K., Ahn H. S., Back H. J. et al. Clinical and hematologic manifestations in patients with Diamond Blackfan anemia in Korea. Korean J Hematol 2012;47(2):131–5.

10. Steele J. M., Sung L., Klaassen R. et al. Disease progression in recently diagnosed patients with inherited marrow failure syndromes: a Canadian Inherited Marrow Failure Registry (CIMFR) report. Pediatr Blood Cancer 2006;47(7):918–25.

11. Tamary H., Nishri D., Yacobovich J. et al. Frequency and natural history of inherited bone marrow failure syndromes: the Israeli Inherited Bone Marrow Failure Registry. Haematologica 2010;95(8):1300–7.

12. Ohga S., Mugishima H., Ohara A. et al. Diamond–Blackfan anemia in Japan: clinical outcomes of prednisolone therapy and hematopoietic stem cell transplantation. Int J Hematol 2004;79(1):22–30.

13. Alter B. P., Giri N., Savage S. A. et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol 2010;150(2):179–88.

14. Vlachos A., Ball S., Dahl N. et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008;142(6):859–76.

15. Scimeca P. G., Weinblatt M. E., Slepowitz G. et al. Diamond–Blackfan syndrome: an unusual cause of hydrops fetalis. Am J Pediatr Hematol Oncol 1988;10(3):241–3.

16. Balaban E. P., Buchanan G. R., Graham M., Frenkel E. P. Diamond–Blackfan syndrome in adult patients. Am J Med 1985;78(3):533–8.

17. Sankaran V. G., Ghazvinian R., Do R. et al. Exome sequencing identifies GATA1 mutations resulting in Diamond–Blackfan anemia. J Clin Invest 2012;122(7): 2439–43.

18. Nichols K. E., Crispino J. D., Poncz M. et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000;24(3):266–70.

19. Diamond L. K., Wang W. C., Alter B. P. Congenital hypoplastic anemia. Adv Pediatr 1976;22:349–78.

20. Buchanan G. R., Alter B. P., Holtkamp C. A., Walsh E. G. Platelet number and function in Diamond–Blackfan anemia. Pediatrics 1981;68(2):238–41.

21. Alter B. P. The bone marrow failure syndromes. In: Nathan D. G., Oski F. A., eds. Hematology of infancy and childhood. WB Saunders; Philadelphia, PA, USA: 1987.

22. Lipton J. M., Kudisch M., Gross R., Nathan D. G. Defective erythroid progenitor differentiation system in congenital hypoplastic (Diamond–Blackfan) anemia. Blood 1986;67(4):962–8.

23. Giri N., Kang E., Tisdale J. F. et al. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond–Blackfan anaemia. Br J Haematol 2000;108(1):167–75.

24. Talerman A., Amigo A. Thymoma associated with a regenerative and aplastic anemia in a five-year-old child. Cancer 1968;21(6):1212–18.

25. Vlachos A., Farrar J. E., Atsidaftos E. et al. Diminutive somatic deletions in the 5q region lead to a phenotype atypical of classical 5q-syndrome. Blood 2013;122(14):2487–90.

26. Anderson M. J., Davis L. R., Hodgson J. et al. Occurrence of infection with a parvovirus-like agent in children with sickle cell anaemia during a two-year period. J Clin Pathol 1982;35(7):744–9.

27. Young N., Harrison M., Moore J. et al. Direct demonstration of the human parvovirus in erythroid progenitor cells infected in vitro. J Clin Invest 1984;74(6):2024–32.

28. Young N., Mortimer P. Viruses and bone marrow failure. Blood 1984;63(4):729–37.

29. Young N. S., Mortimer P. P., Moore J. G., Humphries R. K. Characterization of a virus that causes transient aplastic crisis. J Clin Invest 1984;73(1):224–30.

30. Duncan J. R., Potter C. B., Cappellini M. D. et al. Aplastic crisis due to parvovirus infection in pyruvate kinase deficiency. Lancet 1983;2(8340):14–6.

31. Kelleher J. F., Luban N. L., Mortimer P. P., Kamimura T. Human serum “parvovirus”: a specific cause of aplastic crisis in children with hereditary spherocytosis. J Pediatr 1983;102(5):720–2.

32. Pattison J. R., Jones S. E., Hodgson J. et al. Parvovirus infections and hypoplastic crisis in sickle-cell anaemia. Lancet 1981;1(8221):664–5.

33. Serjeant G. R., Topley J. M., Mason K. et al. Outbreak of aplastic crises in sickle cell anaemia associated with parvovirus-like agent. Lancet 1981;2(8247):595–7.

34. Kurtzman G., Frickhofen N., Kimball J. et al. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med 1989;321 (8):519–23.

35. Van Horn D. K., Mortimer P. P., Young N., Hanson G. R. Human parvovirusassociated red cell aplasia in the absence of underlying hemolytic anemia. Am J Pediatr Hematol Oncol 1986;8(3):235–9.

36. Wang W. C., Mentzer W. C. Differentiation of transient erythroblastopenia of childhood from congenital hypoplastic anemia. J Pediatr 1976;88(5):784–9.

37. Link M. P., Alter B. P. Fetal-like erythropoiesis during recovery from transient erythroblastopenia of childhood (TEC). Pediatr Res 1981;15(7):1036–9.

38. Zwerdling T., Finlay J., Glader B. E. Transient erythroblastopenia of adolescence. Clin Pediatr (Phila) 1986;25(11):563–5.

39. Glader B. E., Backer K. Comparative activity of erythrocyte adenosine deaminase and orotidine decarboxylase in Diamond–Blackfan anemia. Am J Hematol 1986;23(2): 135–9.

40. Fargo J. H., Kratz C. P., Giri N. et al. Erythrocyte adenosine deaminase: diagnostic value for Diamond–Blackfan anaemia. Br J Haematol 2013;160(4):547–54.

41. Glader B. E., Backer K., Diamond L. K. Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia. N Engl J Med 1983;309(24):1486–90.

42. Glader B. E., Backer K. Elevated red cell adenosine deaminase activity: a marker of disordered erythropoiesis in Diamond–Blackfan anaemia and other haematologic diseases. Br J Haematol 1988;68(2):165–8.

43. Chen S., Warszawski J., Bader-Meunier B. et al. Diamond–Blackfan anemia and growth status: the French registry. J Pediatr 2005;147(5):669–73.

44. Ball S. E., McGuckin C.P., Jenkins G., Gordon-Smith E. C. Diamond–Blackfan anaemia in the U. K.: analysis of 80 cases from a 20‑year birth cohort. Br J Haematol 1996;94(4):645–53.

45. Aase J. M., Smith D. W. Congenital anemia and triphalangeal thumbs: a new syndrome. J Pediatr 1969;74(3):471–4.

46. Gazda H. T., Sheen M. R., Vlachos A. et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond–Blackfan anemia patients. Am J Hum Genet 2008;83(6):769–80.

47. Cmejla R., Cmejlova J., Handrkova H. et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond–Blackfan anemia. Hum Mutat 2009;30(3):321–7.

48. Quarello P., Garelli E., Carando A. et al. Diamond–Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations. Haematologica 2010;95(2):206–13.

49. Gripp K. W., McDonald-McGinn D.M., La Rossa D. et al. Bilateral microtia and cleft palate in cousins with Diamond–Blackfan anemia. Am J Med Genet 2001;101(3):268–74.

50. Vlachos A., Muir E. How I treat Diamond–Blackfan anemia. Blood 2010;116(19):3715–23.

51. Lipton J. M., Atsidaftos E., Zyskind I., Vlachos A. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer 2006;46(5):558–64.

52. Ozsoylu S., Coşkun T., Minassazi S. High dose intravenous glucocorticoid in the treatment of childhood acquired aplastic anaemia. Scand J Haematol 1984;33(3):309–16.

53. Ozsoylu S. High-dose intravenous corticosteroid treatment for patients with Diamond–Blackfan syndrome resistant or refractory to conventional treatment. Am J Pediatr Hematol Oncol 1988;10(3):217–23.

54. Buchanan G. R.; International Diamond–Blackfan Anemia Study Group. Oral megadose methylprednisolone therapy for refractory Diamond–Blackfan anemia. International Diamond–Blackfan Anemia Study Group. J Pediatr Hematol Oncol 2001;23(6):353–6.

55. Varricchio L., Godbold J., Scott S. A. et al. Increased frequency of the glucocorticoid receptor A3669G (rs6198) polymorphism in patients with Diamond–Blackfan anemia. Blood 2011;118(2):473–4.

56. Roggero S., Quarello P., Vinciguerra T. et al. Severe iron overload in Blackfan–Diamond anemia: a case-control study. Am J Hematol 2009;84(11):729–32.

57. Evans K., Goldin R., de la Fuente J. Diamond Blackfan anaemia patients have a higher rate of hepatic iron accumulation than thalassaemia major patients leading to fibrosis. Blood (ASH Annual Meeting Abstracts) 2012;120: abstr. 997.

58. Porter J. B., Walter P. B., Neumayr L. D. et al. Iron trafficking and distribution in transfusional overload: insights from comparing Diamond Blackfan anemia with sickle cell disease and thalassemia. Blood (ASH Annual Meeting Abstracts) 2012;120: abstr. 995.

59. Bonanomi S., Harrington Y., de la Fuente J. Iron load can be severe and presents early in DBA patients even when receiving adequate chelation treatment. Blood (ASH Annual Meeting Abstracts) 2012;120: abstr. 1268.

60. Porter J., Galanello R., Saglio G. et al. Relative response of patients with myelodysplastic syndromes and other transfusion-dependent anaemias to deferasirox (ICL670): a 1‑yr prospective study. Eur J Haematol 2008;80(2):168–76.

61. Lal A., Porter J., Sweeters N. et al. Combined chelation therapy with deferasirox and deferoxamine in thalassemia. Blood Cells Mol Dis 2013;50(2):99–104.

62. August C. S., King E., Githens J. H. et al. Establishment of erythropoiesis following bone marrow transplantation in a patient with congenital hypoplastic anemia(Diamond–Blackfan syndrome). Blood 1976;48(4):491–8.

63. Vlachos A., Federman N., Reyes-Haley C. et al. Hematopoietic stem cell transplantation for Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Bone Marrow Transplant 2001;27(4):381–6.

64. Aghalar J., Atsidaftos E., Lipton J. M., Vlachos A. Improved outcomes in Diamond Blackfan anemia treated via stem cell transplant since the year 2000. Blood 2009;114:3202a.

65. Iskander D., Harrington Y., Roberts I. et al. Patients with Diamond Blackfan anaemia have abnormalities of cellular and humoral immunity. Blood (ASH Annual Meeting Abstracts) 2012;120: abstr. 3484.

66. Lipton J. M., Federman N., Khabbaze Y. et al. Osteogenic sarcoma associated with Diamond–

67. Blackfan anemia: a report from the Diamond–Blackfan Anemia Registry. J Pediatr Hematol Oncol 2001;23(1):39–44.

68. Vlachos A., Rosenberg P. S., Atsidaftos E. et al. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 2012;119(16):3815–19.

69. Lipton J. M., Nathan D. G. Cell-cell interactions in the regulation of erythropoiesis. Br J Haematol 1983;53(3):361–7.

70. Ortega J. A., Shore N. A., Dukes P. P., Hammond D. Congenital hypoplastic anemia inhibition of erythropoiesis by sera from patients with congenital hypoplastic anemia. Blood 1975;45(1):83–9.

71. Hoffman R., Zanjani E. D., Vila J. et al. Diamond–Blackfan syndrome: lymphocytemediated suppression of erythropoiesis. Science 1976;193 (4256):899–900.

72. Sawada K., Koyanagawa Y., Sakurama S. et al. Diamond–Blackfan syndrome: a possible role of cellular factors for erythropoietic suppression. Scand J Haematol 1985;35(2):158–65.

73. Ershler W. B., Ross J., Finlay J. L., Shahidi N. T. Bone-marrow microenvironment defect in congenital hypoplastic anemia. N Engl J Med 1980;302(24):1321–7.

74. Finlay J. L., Shahidi N. T., Horowitz S. et al. Lymphocyte dysfunction in congenital hypoplastic anemia. J Clin Invest 1982;70(3):619–26.

75. Freedman M. H., Amato D., Saunders E. F. Erythroid colony growth in congenital hypoplastic anemia. J Clin Invest 1976;57(3):673–7.

76. Nathan D. G., Clarke B. J., Hillman D. G. et al. Erythroid precursors in congenital hypoplastic (Diamond–Blackfan) anemia. J Clin Invest 1978;61 (2):489–98.

77. Tsai P. H., Arkin S., Lipton J. M. An intrinsic progenitor defect in Diamond–Blackfan anaemia. Br J Haematol 1989;73(1):112–20.

78. Chan H. S., Saunders E. F., Freedman M. H. Diamond–Blackfan syndrome. I. Erythropoiesis in prednisone responsive and resistant disease. Pediatr Res 1982;16(6):474–6.

79. Chan H. S., Saunders E. F., Freedman M. H. Diamond–Blackfan syndrome. II. In vitro corticosteroid effect on erythropoiesis. Pediatr Res 1982;16(6):477–8.

80. Perdahl E. B., Naprstek B. L., Wallace W. C., Lipton J. M. Erythroid failure in Diamond–Blackfan anemia is characterized by apoptosis. Blood 1994;83(3):645–50.

81. McGuckin C. P., Ball S. E., Gordon-Smith E. C. Diamond–Blackfan anaemia: three patterns of in vitro response to haemopoietic growth factors. Br J Haematol 1995;89(3):457–64.

82. Bagnara G. P., Zauli G., Vitale L. et al. In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond–Blackfan anemia. Blood 1991;78(9):2203–10.

83. Dianzani I., Garelli E., Dompè C. et al. Mutations in the erythropoietin receptor gene are not a common cause of Diamond–Blackfan anemia. Blood 1996;87(6):2568–72.

84. van Diemen P. C., Maasdam D., Darroudi F., Natarajan A. T. X-ray-sensitivity of lymphocytes of aplastic- and Diamond–Blackfan anemia patients as detected by conventional cytogenetic and chromosome painting techniques. Mutat Res 1997;373(2):225–35.

85. Brookfield E. G., Singh P. Congenital hypoplastic anemia associated with hypogammaglobulinemia. J Pediatr 1974;85(4):529–31.

86. Khan S., Pereira J., Darbyshire P. J. et al. Do ribosomopathies explain some сases of common variable immunodeficiency? Clin Exp Immunol 2011;163 (1):96–103.

87. Abkowitz J. L., Sabo K. M., Nakamoto B. et al. Diamond–Blackfan anemia: in vitro response of erythroid progenitors to the ligand for c-kit. Blood 1991;78 (9):2198–202.

88. Sieff C. A., Yokoyama C. T., Zsebo K. M. et al. The production of steel factor mRNA in Diamond–Blackfan anaemia long-term cultures and interactions of steel factor with erythropoietin and interleukin-3. Br J Haematol 1992;82 (4):640–7.

89. Spritz R. A., Freedman M. H. Lack of mutations of the MGF and KIT genes in Diamond–Blackfan anemia. Blood 1993;81(11):3165.

90. Scopes J., Daly S., Ball S. E. et al. The effect of human flt-3 ligand on сommitted progenitor cell production from normal, aplastic anaemia and Diamond–Blackfan anaemia bone marrow. Br J Haematol 1995;91(3):544–50.

91. McGuckin C.P., Uhr M. R., Liu W. M., Gordon-Smith E. C. The use of recombinant SCF protein for rapid determination of c-kit expression in normal and abnormal erythropoiesis. Eur J Haematol 1996;57(1):72–8.

92. Gordon R. R., Varadi S. Congenital hypoplastic anaemia (pure red-cell anaemia) with periodic erythroblastopenia. Lancet 1962;1(7224):296–9.

93. Sensenbrenner J. A. Congenital hypoplastic anemia of Blackfan and Diamond in sibs. In: Bergsma D., editor. The clinical delineation of birth defects, part XIV, Blood. Williams & Wilkins; Baltimore, MD, USA: 1972. P. 166.

94. Starling K. A., Fernbach D. J. Hypoplastic anemia. J Pediatr 1973;82(4):735.

95. Waterkotte G. W., McElfresh A. E. Congenital pure red cell hypoplasia in identical twins. Pediatrics 1974;54(5):646–7.

96. Forare S. Pure red cell anemia in step siblings. Acta Paediatr 1963;52:159–60.

97. Mott M. G., Apley J., Raper A. B. Congenital (erythroid) hypoplastic anaemia: modified expression in males. Arch Dis Child 1969;44(238):757–60.

98. Hunter R. E., Hakami N. The occurrence of congenital hypoplastic anemia in half brothers. J Pediatr 1972;81(2):346–8.

99. Altman A. C., Gross S. Severe congenital hypoplastic anemia. Transmission from a healthy female to opposite sex step-siblings. Am J Pediatr Hematol Oncol 1983;5(1):99–101.

100. Hamilton P. J., Dawson A. A., Galloway W. H. Congenital erythroid hypoplastic anaemia in mother and daughter. Arch Dis Child 1974;49(1):71–3.

101. Lawton J. W., Aldrich J. E., Turner T. L. Congenital erythroid hypoplastic anaemia: autosomal dominant transmission. Scand J Haematol 1974;13(4):276–80.

102. Michelson A. D. Inheritance of Diamond–Blackfan anemia. Med J Aust 1982;2(9):409–10.

103. Gray P. H. Pure red-cell aplasia. Occurrence in three generations. Med J Aust 1982;1(12):519–21.

104. Diamond L., Allen D. M., Magill F. B. Congenital (erythroid) hypoplastic anemia. A 25‑year study. Am J Dis Child 1961;102:403–15.

105. Tada K., Kudo T., Nakagawa I. et al. [Not Available]. Arch Fr Pediatr 1958;15(2):183–94.

106. Cmejla R., Blafkova J., Stopka T. et al. Ribosomal protein S19 gene mutations in patients with Diamond–Blackfan anemia and identification of ribosomal protein S19 pseudogenes. Blood Cells Mol Dis 2000;26(2):124–32.

107. Orfali R. F., Wynn R. F., Stevens R. F. et al. Failure of red cell production following allogenic BMT for Diamond Blackfan anaemia (DBA) illustrates functional significance of high erythrocyte adenosine deaminase (eADA) activity in the donor. Blood 1999;94:414a.

108. Vlachos A., Dahl N., Dianzani I., Lipton J. M. Clinical utility gene card for: Diamond–Blackfan anemia – update 2013. Eur J Hum Genet 2013;21:10.

109. Gustavsson P., Skeppner G., Johansson B. et al. Diamond–Blackfan anaemia in a girl with a de novo balanced reciprocal X;19 translocation. J Med Genet 1997;34(9):779–82.

110. Farrar J. E., Nater M., Caywood E. et al. Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond–Blackfan anemia. Blood 2008;112(5):1582–92.

111. Gustavsson P., Willing T. N., van Haeringen A. et al. Diamond–Blackfan anaemia: genetic homogeneity for a gene on chromosome 19q13 restricted to 1.8 Mb. Nat Genet 1997;16(4):368–71.

112. Draptchinskaia N., Gustavsson P., Andersson B. et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nat Genet 1999;21(2):169–75.

113. Gazda H. T., Grabowska A., Merida-Long L. B. et al. Ribosomal protein S24 gene is mutated in Diamond – Blackfan anemia. Am J Hum Genet 2006;79 (6):1110–8.

114. Lipton J. M., Ellis S. R. Diamond Blackfan anemia 2008–2009: broadening the scope of ribosome biogenesis disorders. Curr Opin Pediatr 2010;22(1):12–9.

115. Gazda H. T., Preti M., Sheen M. R. et al. Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in Diamond–Blackfan anemia. Hum Mutat 2012;33(7):1037–44.

116. Farrar J. E., Vlachos A., Atsidaftos E. et al. Ribosomal protein gene deletions in Diamond–Blackfan anemia. Blood 2011;118(26):6943–51.

117. Doherty L., Sheen M. R., Vlachos A. et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond–Blackfan anemia. Am J Hum Genet 2010;86(2):222–8.

118. Cmejla R., Cmejlova J., Handrkova H. et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond–Blackfan anemia. Hum Mutat 2007;28(12):1178–82.

119. Ebert B. L., Pretz J., Bosco J. et al. Identification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature 2008;451(7176):335–9.

120. Weiss M. J., Mason P. J., Bessler M. What’s in a name? J Clin Invest 2012;122(7):2346–9.

121. Kuramitsu M., Sato-Otsubo A., Morio T. et al. Extensive gene deletions in Japanese patients with Diamond–Blackfan anemia. Blood 2012;119(10):2376–84.

122. Gazda H. T., Sheen M., Doherty L. et al. Ribosomal protein genes S10 and S26 are commonly mutated in Diamond–Blackfan anemia. Blood 2010;114:175.

123. Gazda H., Landowski M., Buros C. et al. Array comparative genomic hybridization of ribosomal protein genes in Diamond–Blackfan anemia patients; evidence for three new DBA genes, RPS8, RPS14 and RPL15, with large deletion or duplication. Blood (ASH Annual Meeting Abstracts) 2010;116: abstr. 1007.

124. Gazda H. T., Zhong R., Long L. et al. RNA and protein evidence for haploinsufficiency in Diamond–Blackfan anaemia patients with RPS19 mutations. Br J Haematol 2004;127(1):105–13.

125. Flygare J., Kiefer T., Miyake K. et al. Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond–Blackfan anemia. Blood 2005;105(12):4627–34.

126. Ebert B. L., Lee M. M., Pretz J. L. et al. An RNA interference model of RPS19 deficiency in Diamond–Blackfan anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone-responsive genes by microarray. Blood 2005;105(12):4620–6.

127. Hamaguchi I., Ooka A., Brun A. et al. Gene transfer improves erythroid development in ribosomal protein S19‑deficient Diamond–Blackfan anemia. Blood 2002;100(8):2724–31.

128. Devlin E. E., Dacosta L., Mohandas N. et al. A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond–Blackfan anemia. Blood 2010;116(15):2826–35.

129. McGowan K.A., Li J. Z., Park C. Y. et al. Ribosomal mutations cause p53‑mediated dark skin and pleiotropic effects. Nat Genet 2008;40(8):963–70.

130. Danilova N., Sakamoto K. M., Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 2008;112(13):5228–37.

131. Uechi T., Nakajima Y., Chakraborty A. et al. Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond–Blackfan anemia. Hum Mol Genet 2008;17(20):3204–11.

132. Jaako P., Flygare J., Olsson K. et al. Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond–Blackfan anemia. Blood 2011;118(23):6087–96.

133. Fumagalli S., Thomas G. The role of p53 in ribosomopathies. Semin Hematol 2011;48(2):97–105.

134. Donati G., Peddigari S., Mercer C. A., Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2‑p53 checkpoint. Cell Rep 2013;4(1):87–98.

135. Teng T., Mercer C. A., Hexley P. et al. Loss of tumor suppressor RPL5 / RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol 2013;33 (23):4660–71.

136. Donati G., Montanaro L., Derenzini M. Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res 2012;72(7):1602–7.

137. Horos R., Ijspeert H., Pospisilova D. et al. Ribosomal deficiencies in Diamond–Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 2012;119(1):262–72.

138. Xue S., Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012;13(6):355–69.

139. McGowan K.A., Mason P. J. Animal models of Diamond Blackfan anemia. Semin Hematol 2011;48(2):106–16.

140. Lipton J. M., de Alarcon P. A. Diamond: an incomparable legacy. J Pediatr Hematol Oncol 2001;23(6):371–2.

141. Pospisilova D., Cmejlova J., Hak J. et al. Successful treatment of a Diamond–Blackfan anemia patient with amino acid leucine. Haematologica 2007;92(5):e66–7.

142. Jaako P., Debnath S., Olsson K. et al. Dietary L-leucine improves the anemia in a mouse model for Diamond–Blackfan anemia. Blood 2012;120 (11):2225–8.


Для цитирования:


Влахос А., Бланк Л., Липтон Д.М. Анемия Даймонда–Блекфана: модель трансляционного подхода к пониманию заболеваний у людей. Российский журнал детской гематологии и онкологии (РЖДГиО). 2014;(3):20-35. https://doi.org/10.17650/2311-1267-2014-0-3-20-35

For citation:


Vlachos A., Blanc L., Lipton J.M. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Russian Journal of Pediatric Hematology and Oncology. 2014;(3):20-35. (In Russ.) https://doi.org/10.17650/2311-1267-2014-0-3-20-35

Просмотров: 1071


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)