New insights into the blood clotting
https://doi.org/10.17650/2311-1267-2018-5-3-13-22
Abstract
In recent years, an active revision of ideas about the mechanisms of blood clotting has been performed. Traditional views were largely inaccurate, which is the main reason for the inconsistency of the modern standard set of coagulation tests. This set was found to be insensitive, especially to hypercoagulable disorders. In this paper, we consider modern concepts of how blood clotting occurs. From this consideration follows the need for a critical review of existing methods for assessing the status of hemostasis and a standard set of laboratory tests. The lecture ends with a brief examination of which methods are the most informative today and could form the basis of a new informative coagulation testing set.
Keywords
About the Authors
F. I. AtaullakhanovRussian Federation
1 Samory Mashela St., Moscow, 117997; 1, Bldg. 2 Leninskie Gory St., Moscow, 119992; 4 Kosygina St., Moscow, 119991
A. G. Rumyantsev
Russian Federation
1 Samory Mashela St., Moscow, 117997; 1 Ostrovityanova St., Moscow, 117997
References
1. Willoughby S., Holmes A., Loscalzo J. Platelets and cardiovascular disease. Eur J Cardiovasc Nurs 2002;1(4):273–88. doi: 10.1016/S1474-51510200038-5.
2. Panteleev M.A., Vasilyev S.A., Sinauridze E.I. et al. Practical coagulology. М.: Prakticheskaya meditsina, 2011. 192 p. (In Russ.).
3. Shmidt R., Tevs G. Human physiology. Vol. 2. М.: Mir, 2005. 314 p. (In Russ.).
4. Lim B.B., Lee E.H., Sotomayor M., Schulten K. Molecular basis of fibrin clot elasticity. Structure 2008;16(3):449–59. doi: 10.1016/j.str.2007.12.019.
5. Heemskerk J.W., Mattheij N.J., Cosemans J.M. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013;11(1):2–16. doi: 10.1111/jth.12045.
6. Zwaal R.F., Schroit A.J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997;89(4):1121–32. PMID: 9028933.
7. Lawson J.H., Kalafatis M., Stram S., Mann K.G. A model for the tissue factor pathway to thrombin. I. An empirical study. J Biol Chem 1994;269(37): 23357–66. PMID: 8083241.
8. Rosing J., Tans G., Govers-Riemslag J.W., Zwaal R.F., Hemker H.C. The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 1980;255(1):274–83. PMID: 7350159.
9. Belyaev A.V. Long ligands reinforce biological adhesion under shear flow. Phys Rev E 2018;97(4–1):042407. doi: 10.1103/PhysRevE.97.042407.
10. Stalker T.J., Traxler E.A., Wu J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013;121(10):1875–85. doi: 10.1182/blood-2012-09-457739.
11. Balandina A.N., Shibeko A.M., Kireev D.A. et al. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys J 2011;101(8):1816–24. doi: 10.1016/j.bpj.2011.08.034.
12. Dashkevich N.M., Ovanesov M.V., Balandina А.N. et al. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J 2012;103(10):2233–40. doi: 10.1016/j.bpj.2012.10.011.
13. Ovanesov M.V., Ananyeva N.M., Panteleev M.A., Ataullakhanov F.I., Saenko E.L. Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: Initiator cells do not regulate spatial growth rate. J Thromb Haemost 2005;3(2):321–31. doi: 10.1111/j.1538-7836.2005.01128.x.
14. Panteleev M.A., Balandina A.N., Lipets E.N., Ovanesov M.V., Ataullakhanov F.I. Task-oriented modular decomposition of biological networks: trigger mechanism in blood coagulation. Biophys J 2010;98(9):1751–61. doi: 10.1016/j.bpj.2010.01.027.
15. Tuktamyshov R., Zhdanov R. The method of in vivo evaluation of hemostasis: Spatial thrombodynamics. Hematology 2015;20(10):584–6. doi: 10.1179/1607845415Y.0000000022.
16. Ovanesov M.V., Krasotkina J.V., Ul’yanova L.I. et al. Hemophilia A and B are associated with abnormal spatial dynamics of clot growth. Biochim Biophys Acta 2002;1572(1):45–57. PMID: 12204332.
17. 17 Kol’tsova E.M., Balandina A.N.,Demina I.A. The use of a spatial thrombin generation method for assessment of platelet procoagulant activity after platelet concentrate transfusion in children. Voprosy gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology 2016;15(2):32–9. (In Russ.).
18. Munnix I.C., Cosemans J.M., Auger J.M., Heemskerk J.W. Platelet response heterogeneity in thrombus formation. Thromb Haemost 2009;102(6):1149–56. doi: 10.1160/TH09-05-0289.
19. Abaeva A.A., Canault M., Kotova Y.N. et al. Procoagulant platelets form an α-granule protein-covered “cap” on their surface that promotes their attachment to aggregates. J Biol Chem 2013;288(41):29621–32. doi: 10.1074/jbc.M113.474163.
20. Podoplelova N.A., Sveshnikova A.N., Kotova Y.N. et al. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood 2016;128(13):1745–55. doi: 10.1182/blood-2016-02-696898.
21. Siljander P.R. Platelet-derived microparticles - an updated perspective. Thromb Res 2011;127 Suppl 2:S30–3. doi: 10.1016/S0049-3848(10)70152-3.
22. Lipets E., Vlasova O., Urnova E. et al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One 2014;9(1):e87692. doi: 10.1371/journal.pone.0087692.
23. Tutwiler V., Peshkova A.D., Andrianova I.A. et al. Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke. Arterioscler Thromb Vasc Biol 2017;37(2):271–9. doi: 10.1161/ATVBAHA.116.308622.
24. Tutwiler V., Litvinov R.I., Lozhkin A.P. et al. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood 2016;127(1):149–59. doi: 10.1182/blood-2015-05-647560.
Review
For citations:
Ataullakhanov F.I., Rumyantsev A.G. New insights into the blood clotting. Russian Journal of Pediatric Hematology and Oncology. 2018;5(3):13-22. (In Russ.) https://doi.org/10.17650/2311-1267-2018-5-3-13-22