Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

ZEB1 as an additional predictor of tumor progression in Ewingʼs sarcoma. Results of a morphological study on a population of children and adolescents

https://doi.org/10.21682/2311-1267-2020-7-3-39-46

Abstract

Relevance. Ewingʼs sarcoma (ES) is a classic representative of the extensive family of ES tumors, which occupies one of the leading positions among the malignant pathology of the musculoskeletal system in children and adolescents. This group is characterized by an extremely large variety of morphological, immunohistochemical, and molecular genetic characters among its representatives. The absence of specific pathognomonic markers for ES, as well as the presence of wide variability of clinical manifestations complicates the differential diagnosis. 

Materials and methods. The study included patients of childhood and adolescence with a localized and generalized form of ES/PNEТ of various localizations undergoing treatment in the conditions of the Department of Pediatric Oncology of the Federal State Budgetary Research Center for Oncology from 2009 to 2019. As the material, the tissue of the primary tumor of ES/PNEТ from paraffin blocks was used, obtained from 67 patients during the primary biopsy, as well as after the surgical stage as part of a combined or complex treatment. The expression of ZEB1 was determined immunohistochemically.

Results. The highest average level of expression of ZEB1 protein was observed in group 4 with a generalized form of ES (surgical material) and amounted to 60.8 ± 2.2 %, the minimum level was detected in group 2 with a localized form of ES (surgical material) and amounted to 29.2 ± 3.0 %. Between groups 2 (localized form) and 4 (generalized form) statistically significant differences were noted (p = 0.026).

Conclusion. As a result of an immunohistochemical study, the ZEB1 protein showed its prognostic significance when comparing groups with a localized and generalized form of ES (p = 0.026). The predominance of the expression level of ZEB1 protein in the group with the generalized form statistically significantly increased the chances of metastasis by 3.6 times (95 % CI 1.13-11.8).

About the Authors

O. I. Kit
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Corresponding Member of the Russian Academy of Sciences, Dr. of Sci. (Med.), Professor, General Director

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 1728-0329



D. Yu. Yurchenko
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Pediatric Oncologist Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 8008-0113



E. P. Ulyanova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Researcher Laboratory of Tumor Immunophenotyping

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 1243-9475



D. V. Burtsev
Regional Consultative and Diagnostic Center
Russian Federation

Dr. of Sci. (Med.), Head Doctor of the Regional Consultative andDiagnosticCenter

127 Pushkinskaya St., Rostov-on-Don, 344000

SPIN-code: 4766-0617




S. A. Kuznetsov
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Pediatric Oncologist, Head of the Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 4104-3755



A. B. Sagakyants
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Biol.), docent, Head of the Laboratory of Tumor Immunophenotyping

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 7272-1408



E. M. Frantsiyants
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Dr. of Sci. (Biol.), Professor, Deputy Director General for Science, Head of the Laboratory of Malignant Tumor

Pathogenesis

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 9427-9928



G. A. Mkrtchyan
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Doctor of the Highest Category, Pediatric Surgeon, Pediatric Oncologist Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 1861-5165



E. Ye. Pak
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Pediatric Oncologist Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 8750-9120



M. V. Starzhetskaya
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Cand. of Sci. (Med.), Pediatric Oncologist Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 7855-2512



A. I. Bespalova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Pediatric oncologist of the Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 6779-1744



O. P. Popovyan
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Pediatric Oncologist Department of Pediatric Oncology No. 2

63 14th line St., Rostov-on-Don, 344037

SPIN-code: 5191-3429



References

1. Samburova N.V., Pimenov I.A., Zhevak T.N., Litvickiy P.F. Ewingʼs sarcoma: molecular genetic mechanisms of pathogenesis. Voprosy Sovremennoy Pediatrii = Current Pediatrics 2019;18(4):257–63. (In Russ.). doi: 10.15690/vsp.v18i4.2042.

2. Semenova A.I. Ewingʼs sarcoma: disease characteristics, diagnostic features, therapeutic tactics. Prakticheskaya Onkologiya = Practical Oncology 2010;11(1):45. (In Russ.).

3. Bulanov D.V. Malignant small round cellular tumors of the Ewing sarcoma family: modern ideas on histogenesis, immunohistochemical, and molecular genetic markers. Molekulyarnaya meditsina = Molecular Medicine 2013;1:12–14.(In Russ.).

4. Chaturvedi A., Hoffman L.M., Jensen C.C., Lin Y.C., Grossmann A.H., Randall R.L., Lessnick S.L., Welm A.L., Beckerle M.C. Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma. Mol Biol Cell 2014;25(18):2695–709. doi: 10.1091/mbc.E14-01-0007.

5. Hmelevskaya V.N., Kupriyanova E.I., Cepenko V.V. Ewingʼs pelvic bone sarcoma (literature reference). A clinical case of prolonged observation of a patient after curing of Ewingʼs pelvic bone sarcoma with metastases to regional lymph nodes and to the right lung. Sarkomy kostey, myagkikh tkaney i opukholi kozhi = Sarcomas of Bones, Soft Tissues and Skin Tumors 2019;1:34–5. (In Russ.).

6. Vasilʼev N.V., Poletaeva S.V., Tabakaev S.A., Tyukalov Yu.I., Perelmuter V.M. Ewingʼs sarcoma: features of lymphogenous metastasis and prognosis factors. Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology 2019;18(5):29–37. (In Russ.).

7. Vasilʼev N.V. Lymphogenic metastasis of sarcomas of soft tissues: frequency of metastasis, risk factors, mechanisms of occurrence. Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology 2015;3:68–75. (In Russ.).

8. Lawlor E.R., Sorensen P.H. Twenty years on: what do we really know about Ewing sarcoma and what is the path forward? Crit Rev Oncol 2015;20(3‒4):155‒71. doi: 10.1615/critrevoncog.2015013553.

9. Farmakovskaya M.D., Hromova N.V., Rybko V.A., Kopnin P.B. The role of the epithelialmesenchymal transition in the regulation of the properties of cancer stem cells of solid tumors. Rossiyskiy Bioterapevticheskiy Zhurnal = Russian Journal of Biotherapy 2015;4:14. (In Russ.).

10. Hill B.S., Pelagalli A., Passaro N., Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 2017;8(42):73296‒311. doi: 10.18632/oncotarget.20265.

11. Jolly M.K., Ware K.E., Gilja S., Somarelli J.A., Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017;11(7):755‒69. doi:10.1002/1878-0261.12083.

12. Chaffer C.L., Thompson E.W., Williams E.D. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 2007;185(1‒3):7‒19. doi: 10.1159/000101298.

13. Yurchenko D.Yu., Burcev D.V., Kuznecov S.A., Sagakyanc A.B., Mkrtchyan G.A., Starzheckaya M.V., Bespalova A.I., Popovyan O.P., Kushtova L.B. Some features of the molecular genetic pathogenesis of Ewingʼs sarcoma. Modern Problems of Science and Education 2019;3. [Electronic resource]: http://www.science-education.ru/ru/article/view?id=28924. (In Russ.).

14. Ming H., Chuang Q., Jiashi W., Bin L., Guangbin W., Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 2018;10(12):4141‒51. doi: 10.18632/aging.101710.

15. Pozdnyakov D.Yu., Shuvalov O.Yu., Barlev N.A., Mittenberg A.G. The transcription factor ZEB1 and its role in the processes of metastasis and oncogenesis. Cytology 2019;61(11):915–25. (In Russ.).

16. Wiles E.T., Bell R., Thomas D., Beckerle M., Lessnick S.L. ZEB2 represses the epithelial phenotype and facilitates metastasis in Ewing sarcoma. Genes Cancer 2013;4(11‒2):486‒500. doi: 10.1177/1947601913506115.

17. Liu Y., Sánchez-Tilló E., Lu X., Huang L., Clem B., Telang S., Jenson A.B., Cuatrecasas M., Chesney J., Postigo A., Dean D.C. Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression. J Biol Chem 2013;288(16):11572‒80. doi:10.1074/jbc.M112.434951.

18. Manshouri R., Coyaud E., Kundu S.T., Peng D.H., Stratton S.A., Alton K., Bajaj R., Fradette J.J., Minelli R., Peoples M.D., Carugo A., Chen F., Bristow C., Kovacs J.J., Barton M.C., Heffernan T., Creighton C.J., Raught B., Gibbons D.L. ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer. Nat Commun 2019;10(1):5125. doi:10.1038/s41467-019-12832-z.

19. Wang H., Huang B., Li B.M., Cao K.Y., Mo C.Q., Jiang S.J., Pan J.C., Wang Z.R., Lin H.Y., Wang D.H., Qiu S.P. ZEB1-mediated vasculogenic mimicry formation associates with epithelialmesenchymal transition and cancer stem cell phenotypes in prostate cancer. J Cell Mol Med 2018;22(8):3768‒81. doi:10.1111/jcmm.13637.

20. Lindner P., Paul S., Eckstein M., Hampel C., Muenzner J.K., Erlenbach-Wuensch K., Ahmed H.P., Mahadevan V., Brabletz T., Hartmann A., Vera J., Schneider-Stock R. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis 2020;11(2):147. doi:10.1038/s41419-020-2340-4.

21. Larsen J.E., Nathan V., Osborne J.K., Farrow R.K., Deb D., Sullivan J.P., Dospoy P.D., Augustyn A., Hight S.K., Sato M., Girard L., Behrens C., Wistuba I.I., Gazdar A.F., Hayward N.K., Minna J.D. ZEB1 drives epithelial to mesenchymal transition in lung cancer. J Clin Invest 2016;126(9):3219‒35. doi: 10.1172/JCI76725.

22. Xiao Y.Y., Lin L., Li Y.H., Jiang H.P., Zhu L.T., Deng Y.R., Lin D., Chen W., Zeng C.Y., Wang L.J., Chen S.C., Jiang Q.P., Liu C.H., Fang W.Y., Guo S.Q. ZEB1 promotes invasion and metastasis of endometrial cancer by interacting with HDGF and inducing its transcription. Am J Cancer Res 2019;9(11):2314‒30. PMID: 31815037.


Review

For citations:


Kit O.I., Yurchenko D.Yu., Ulyanova E.P., Burtsev D.V., Kuznetsov S.A., Sagakyants A.B., Frantsiyants E.M., Mkrtchyan G.A., Pak E.Ye., Starzhetskaya M.V., Bespalova A.I., Popovyan O.P. ZEB1 as an additional predictor of tumor progression in Ewingʼs sarcoma. Results of a morphological study on a population of children and adolescents. Russian Journal of Pediatric Hematology and Oncology. 2020;7(3):39-46. (In Russ.) https://doi.org/10.21682/2311-1267-2020-7-3-39-46

Views: 597


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X