Preview

Российский журнал детской гематологии и онкологии (РЖДГиО)

Расширенный поиск

Мезенхимальные мультипотентные стромальные клетки и онкобезопасность: две стороны одной медали или обоюдоострый меч (обзор зарубежной литературы)

https://doi.org/10.21682/2311-1267-2021-8-1-64-84

Полный текст:

Аннотация

Знания о механизмах действия мезенхимальных мультипотентных стромальных клеток (МСК) с момента их открытия претерпели значительную эволюцию. С первых попыток использовать замечательные свойства МСК в восстановлении функций органов и тканей встал важнейший вопрос – насколько безопасным будет их применение? Одним из аспектов безопасности применения такого биоматериала являются туморогенность и онкогенность. Как показали многочисленные исследования, те механизмы, при помощи которых МСК реализуют свой регенеративный потенциал, могут, в принципе, оказывать стимулирующее действие и на клетки опухоли. В данном обзоре представлены частные механизмы, оказывающие потенциально проопухолевое действие, к которым можно отнести хоуминг МСК в место опухоли, поддержка репликативного и пролиферативного сигналлинга как раковых клеток, так и стволовых раковых клеток, ангиогенез, воздействие на эпителиально-мезенхимальный переход. Наряду с проопухолевыми описаны и механизмы возможного противоопухолевого действия – прямое подавление роста опухоли, нагрузка и транспортирование химиотерапевтических агентов, онколитических вирусов, генетические модификации для таргетирования рака, доставка в опухоль «генов самоубийства». Также приведен небольшой обзор проводящихся в настоящее время клинических испытаний МСК в качестве противоопухолевых средств при злокачественных новообразованиях различной локализации (желудочно-кишечный тракт, легкие, яичники). 

Об авторах

Д. А. Иволгин
ФГБОУ ВО «Северо-Западный государственный медицинский университет имени И.И. Мечникова» Минздрава России
Россия

к.м.н., и. о. заведующего научно-сследовательской лабораторией клеточных технологий,

191015, Санкт-Петербург, ул. Кирочная, 41



Д. А. Кудлай
АО «ГЕНЕРИУМ»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет); ФГБУ «Государственный научный центр “Институт иммунологии” Федерального медико-биологического агентства»
Россия

д.м.н., вице-президент по внедрению новых медицинских технологий, 123112, Россия, Москва, ул. Тестовская, 10;

профессор кафедры фармакологии, 119991, Россия, Москва, ул. Трубецкая, 8, стр. 2;

ведущий научный сотрудник лаборатории персонализированной медицины и молекулярной иммунологии № 71, 115522, Москва, Каширское шоссе, 24



Список литературы

1. Wang Y., Chen X., Cao W., Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014;15(11):1009–16. doi: 10.1038/ni.3002.

2. da Silva Meirelles L., Fontes A.M., Covas D.T., Caplan A.I Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009;20(5–6):419–27. doi: 10.1016/j.cytogfr.2009.10.002.

3. https://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cell&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=&phase=2&phase=3 (Date of access – 02.03.2021).

4. Phinney D.G., Galipeau J., Krampera M., Martin I., Shi Y., Sensebe L. MSCs: science and trials. Nat Med 2013;19(7):812. doi: 10.1038/nm.3220.

5. Elzaouk L., Moelling K., Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006;15(11):865–74. doi: 10.1111/j.1600-0625.2006.00479.x.

6. Khakoo A.Y., Pati S., Anderson S.A., Reid W., Elshal M.F., Rovira I.I., Nguyen A.T., Malide D., Combs C.A., Hall G., Zhang J., Raffeld M., Rogers T.B., Stetler-Stevenson W., Frank J.A., Reitz M., Finkel T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006;203(5):1235–47. doi: 10.1084/jem.20051921.

7. Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449(7162):557–63. doi: 10.1038/nature06188.

8. Ridge S.M., Sullivan F.J., Glynn S.A. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017;16(1):31. doi: 10.1186/s12943-017-0597-8.

9. Ghaderi A., Abtahi S. Mesenchymal Stem Cells: Miraculous Healers or Dormant Killers? Stem Cell Rev Rep 2018;14(5):722–33. doi: 10.1007/s12015-018-9824-y 3.

10. Lazennec G., Jorgensen C. Concise review: adult multipotent stromal cells and cancer: risk or benefi t? Stem Cells 2008;26(6):1387–94. doi: 10.1634/stemcells.2007-1006.

11. Lazennec G., Lam P.Y. Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochim Biophys Acta 2016;1886(2):290–9. doi: 10.1016/j.bbcan.2016.10.004.

12. Chavey C., Bibeau F., Gourgou-Bourgade S., Burlinchon S, Boissiere F., Laune D., Roques S., Lazennec G. Estrogen-receptor negative breast cancers exhibit a high cytokine content. Breast Cancer Res 2007;9(1):R15. doi: 10.1186/bcr1648.

13. Lazennec G., Richmond A. Chemokines and chemokine receptors: new insights into cancer-related infl ammation. Trends Mol Med 2010;16(3):133–44. doi: 10.1016/j.molmed.2010.01.003.

14. Klopp A.H., Spaeth E.L., Dembinski J.L.,Woodward W.A., Munshi A., Meyn R.E., Cox J.D., Andreeff M., Marini F.C. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007;67(24):11687–95. doi: 10.1158/0008-5472.CAN-07-1406.

15. Menon L.G., Picinich S., Koneru R., Gao H. , Lin S.Y., Koneru M., Mayer-Kuckuk P., Glod J., Banerjee D. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007;25(2):520–8. doi: 10.1634/stemcells.2006-0257.

16. Kim D.S., Kim J.H., Lee J.K., Choi S.J., Kim J.S., Jeun S.S., Oh W., Yang Y.S., Chang J.W. Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 2009;18(3):511–9. doi: 10.1089/scd.2008.0050.

17. Dwyer R.M., Potter-Beirne S.M., Harrington K.A., Lowery A.J., Hennessy E., Murphy J.M., Barry F.P., O’Brien T., Kerin M.J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007;13(17):5020–7. doi: 10.1158/1078-0432.CCR-07-0731.

18. Xu S., Menu E., De Becker A., Van Camp B., Vanderkerken K., Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012;30(2):266–79. doi: 10.1002/stem.787.

19. Lejmi E., Perriraz N., Clement S., Morel P., Baertschiger R., Christofilopoulos P., Meier R., Bosco D., Buhler D.H., Gonelle-Gispert G. Inflammatory Chemokines MIP-1delta and MIP-3alpha Are Involved in the Migration of Multipotent Mesenchymal Stromal Cells Induced by Hepatoma Cells. Stem Cells Dev 2015;24(10):1223–35. doi: 10.1089/scd.2014.0176.

20. Lourenco S., Teixeira V.H., Kalber T., Jose R.J., Floto R.A., Janes S.M. Macrophage migration inhibitory factorCXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 2015;194(7):3463–74. doi: 10.4049/jimmunol.1402097.

21. Haga H., Yan I.K., Takahashi K., Wood J., Zubair A., Patel T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J Extracell Vesicles 2015;4:24900. doi: 10.3402/jev.v4.24900.

22. Coffelt S.B., Marini F.C., Watson K., Zwezdaryk K.J., Dembinski J.L., LaMarca H.L., Tomchuck S.L., zu Bentrup K.H., Danka E.S., Henkle S.L., Scandurro A.B. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106(10):3806–11. doi: 10.1073/pnas.0900244106.

23. Lin S.Y., Yang J., Everett A.D., Clevenger C.V., Koneru M., Mishra P.J., Kamen B., Banerjee D., Glod J. The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res 2008;314(17):3107–17. doi: 10.1016/j.yexcr.2008.07.028.

24. Birnbaum T., Roider J., Schankin C.J., Padovan C.S., Schichor C., Goldbrunner R., Straube A. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 2007;83(3):241–7. doi: 10.1007/s11060-007-9332-4.

25. Gutova M., Najbauer J., Frank R.T., Kendall S.E., Gevorgyan A., Metz M.Z., Guevorkian M., Edmiston M., Zhao D, Glackin C.A., Kim S.U., Aboody K.S. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 2008;26(6):1406–13. doi: 10.1634/stemcells.2008-0141.

26. Heissig B., Dhahri D., Eiamboonsert S., Salama Y., Shimazu H., Munakata S., Hattori K. Role of mesenchymal stem cell-derived fi brinolytic factor in tissue regeneration and cancer progression. Cell Mol Life Sci 2015;72(24):4759–70. doi: 10.1007/s00018-015-2035-7.

27. Ho I.A., Yulyana Y., Sia K.C., Newman J.P., Guo C.M., Hui K.M., Lam P.Y. Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. FASEB J 2014;28(10):4359–68. doi: 10.1096/fj.14-252551.

28. Ho I.A., Chan K.Y., Ng W.H., Guo C.M., Hui K.M., Cheang P., Lam P.Y. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 2009;27(6):1366–75. doi: 10.1002/stem.50.

29. Zheng Y., He L., Wan Y., Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 2013;22(2):256–67. doi: 10.1089/scd.2012.0172.

30. He L., Zhao F., Zheng Y., Wan Y., Song J. Loss of interactions between p53 and survivin gene in mesenchymal stem cells after spontaneous transformation in vitro. Int J Biochem Cell Biol 2016;75:74–84. doi: 10.1016/j.biocel.2016.03.018.

31. Luo J., Lee S.O., Cui Y., Yang R., Li L., Chang C. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2alpha/androgen receptor signals. Oncotarget 2015;6(29):27555–65. doi: 10.18632/oncotarget.4515.

32. Makinoshima H., Dezawa M. Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett 2009;583(22):3697–703. doi: 10.1016/j.febslet.2009.10.061.

33. Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumorassociated fi broblasts contributes to fi brovascular network expansion and tumor progression. PLoS One 2009;4(4):e4992. doi: 10.1371/journal.pone.0004992.

34. Mi Z., Bhattacharya S.D., Kim V.M., Guo H., Talbot L.J., Kuo P.C. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011;32(4):477–87. doi: 10.1093/carcin/bgr009.

35. Escobar P., Bouclier C., Serret J., Bieche I., Brigitte M., Caicedo A., Sanchez E., Vacher S., Vignais M.L., Bourin P., Genevieve D., Molina F., Jorgensen C., Lazennec G. IL-1beta produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production. Oncotarget 2015;6(30):29034–47. doi: 10.18632/oncotarget.4732.

36. Halpern J.L., Kilbarger A., Lynch C.C. Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Lett 2011;308(1):91–9. doi: 10.1016/j.canlet.2011.04.018.

37. Wang J., Wang Y., Wang S., Cai J., Shi J., Sui X., Cao Y., Huang W., Chen X., Cai Z., Li H., Bardeesi A.S., Zhang B., Liu M., Song W., Wang M., Xiang A.P. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget 2015;6(40):42825–37. doi: 10.18632/oncotarget.5739.

38. Peinado H., Aleckovic M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G., Hergueta-Redondo M., Williams C., Garcia-Santos G., Ghajar C., Nitadori-Hoshino A., Hoff man C., Badal K., Garcia B.A., Callahan M.K., Yuan J., Martins V.R., Skog J., Kaplan R.N., Brady M.S., Wolchok J.D., Chapman P.B., Kang Y., Bromberg J., Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012;18(6):883–91. doi: 10.1038/nm.2753.

39. Shi S., Zhang Q., Xia Y., You B., Shan Y., Bao L., Li L., You Y., Gu Z. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res 2016;6(2):459–72. PMID: 27186416.

40. Barcellos-de-Souza P., Comito G., Pons-Segura C., Taddei M.L., Gori V., Becherucci V., Bambi F., Margheri F., Laurenzana A., Del Rosso M., Chiarugi P. Mesenchymal Stem Cells are Recruited and Activated into Carcinoma Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-beta1. Stem Cells 2016;34(10):2536–47. doi: 10.1002/stem.2412.

41. McAndrews K.M., McGrail D.J., Ravikumar N., Dawson M.R. Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β. Sci Rep 2015;5:16941. doi: 10.1038/srep16941.

42. Berger L., Shamai Y., Skorecki K.L., Tzukerman M. Tumor Specifi c Recruitment and Reprogramming of Mesenchymal Stem Cells in Tumorigenesis. Stem Cells 2016;34(4):1011–26. doi: 10.1002/stem.2269.

43. Wang W., Zhong W., Yuan J., Yan C., Hu S., Tong Y., Mao Y., Hu T., Zhang B., Song G. Involvement of Wnt/beta-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget 2015;6(39):42276–89. doi: 10.18632/oncotarget.5514.

44. Takam Kamga P., Bassi G., Cassaro A., Midolo M., Di Trapani M., Gatti A., Carusone R., Resci F., Perbellini O., Gottardi M., Bonifacio M., Nwabo Kamdje A.H., Ambrosetti A., Krampera M. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget 2016;7(16):21713–27. doi: 10.18632/oncotarget.7964.

45. Yulyana Y., Ho I.A., Sia K.C., Newman J.P., Toh X.Y., Endaya B.B., Chan J.K., Gnecchi M., Huynh H., Chung A.Y., Lim K.H., Leong H.S., Iyer N.G., Hui K.M., Lam P.Y. Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/ Akt signaling, Mol Ther 2015;23(4):746–56. doi: 10.1038/mt.2015.13.

46. Qiao L., Xu Z.L., Zhao T.J., Ye L.H., Zhang X.D. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signaling. Cancer Lett 2008;269(1):67–77. doi: 10.1016/j.canlet.2008.04.032.

47. Attar-Schneider O., Zismanov V., Drucker L., Gottfried M. Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 2016;37(4):4755–65. doi: 10.1007/s13277-015-4304-3.

48. Lee J.K., Park S.R., Jung B.K., Jeon Y.K., Lee Y.S., Kim M.K., Kim Y.G., Jang J.Y., Kim C.W. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013;8(12):e84256. doi: 10.1371/journal.pone.0084256.

49. Lou G., Song X., Yang F., Wu S., Wang J., Chen Z., Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015;8:122. doi: 10.1186/s13045-015-0220-7.

50. McLean K., Gong Y., Choi Y., Deng N., Yang K., Bai S., Cabrera L., Keller E., McCauley L., Cho K.R., Buckanovich R.J. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011;121(8):3206–19. doi: 10.1172/JCI45273.

51. Coffman L.G., Choi Y.J., McLean K., Allen B.L., di Magliano M.P., Buckanovich R.J. Human carcinoma associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 2016;7(6):6916–32. doi: 10.18632/oncotarget.6870.

52. Cuiffo B.G., Campagne A., Bell G.W., Lembo A., Orso F., Lien E.C., Bhasin M.K., Raimo M., Hanson S.E., Marusyk A., El-Ashry D., Hematti P., Polyak K., Mechta-Grigoriou F., Mariani O., Volinia S., Vincent-Salomon A., Taverna D., Karnoub A.E. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breastcancer metastasis. Cell Stem Cell 2014;15(6):762–74. doi: 10.1016/j.stem.2014.10.001.

53. Li H.J., Reinhardt F., Herschman H.R., Weinberg R.A. Cancerstimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2012;2(9):840–55. doi: 10.1158/2159-8290.CD-12-0101.

54. Liu S., Ginestier C., Ou S.J., Clouthier S.G., Patel S.H., Monville F., Korkaya H., Heath A., Dutcher J., Kleer C.G., Jung Y., Dontu G., Taichman R., Wicha M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011;71(2):614–24. doi: 10.1158/0008-5472.CAN-10-0538.

55. Wu X.B., Liu Y., Wang G.H., Xu X., Cai Y., Wang H.Y., Li Y.Q., Meng H.F., Dai F., Jin J.D. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-kappaB activation. Sci Rep 2016;6:21420. doi: 10.1038/srep21420.

56. Tsai K.S., Yang S.H., Lei Y.P., Tsai C.C., Chen H.W., Hsu C.Y., Chen L.L., Wang H.W., Miller S.A., Chiou S.H., Hung M.C., Hung S.C. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 2011;141(3):1046–56. doi: 10.1053/j.gastro.2011.05.045.

57. Luo J., Lee S.O., Liang L., Huang C.K., Li L., Wen S., Chang C. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 2014;33(21):2768–78. doi: 10.1038/onc.2013.233.

58. Yang Y., Otte A., Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with diff erent tumor cell lines. Stem Cells Dev 2015;24(10):1205–22. doi: 10.1089/scd.2014.0413.

59. Caicedo A., Fritz V., Brondello J.M., Ayala M., Dennemont I., Abdellaoui N., de Fraipont F., Moisan A., Prouteau C.A., Boukhaddaoui H., Jorgensen C., Vignais M.L. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 2015;5:9073. doi: 10.1038/srep09073.

60. Martin F.T., Dwyer R.M., Kelly J., Khan S., Murphy J.M., Curran C., Miller N., Hennessy E., Dockery P., Barry F.P., O’Brien T., Kerin M.J. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010;124(2):317–26. doi: 10.1007/s10549-010-0734-1.

61. Iser I.C., Ceschini S.M., Onzi G.R., Bertoni A.P., Lenz G., Wink M.R. Conditioned Medium from AdiposeDerived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro. Mol Neurobiol 2016;53(10):7184–99. doi: 10.1007/s12035-015-9585-4.

62. Mishra P.J., Mishra P.J., Humeniuk R., Medina D.J., Alexe G., Mesirov J.P., Ganesan S., Glod J.W., Banerjee D. Carcinoma-Associated Fibroblast-Like Differentiation of Human Mesenchymal Stem Cells. Cancer Res 2008;68(11):4331–9. doi: 10.1158/0008-5472.CAN-08-0943.

63. Ohkouchi S., Block G.J., Katsha A.M., Kanehira M., Ebina M., Kikuchi T., Saijo Y., Nukiwa T., Prockop D.J. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 2012;20(2):417–23. doi: 10.1038/mt.2011.259.

64. Chowdhury R., Webber J.P., Gurney M., Mason M.D., Tabi Z., Clayton A. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 2015;6(2):715–31. doi: 10.18632/oncotarget.2711.

65. Al-toub M., Vishnubalaji R., Hamam R., Kassem M., Aldahmash A., Alajez N.M. CDH1 and IL1-beta expression dictates FAK and MAPKKdependent cross-talk between cancer cells and human mesenchymal stem cells. Stem Cell Res Ther 2015;6(1):135. doi: 10.1186/s13287-015-0123-0.

66. Anton K., Banerjee D., Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 2012;7(4):e35036. doi: 10.1371/journal.pone.0035036.

67. Ferrand J., Noel D., Lehours P., Prochazkova-Carlotti M., Chambonnier L., Menard A., Megraud F., Varon C. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 2011;6(5):e19569. doi: 10.1371/journal.pone.0019569.

68. Rappa G., Mercapide J., Lorico A. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol 2012;180(6):2504–15. doi: 10.1016/j.ajpath.2012.02.020.

69. Quante M., Tu S.P., Tomita H., Gonda T., Wang S.S., Takashi S., Baik G.H., Shibata W., Diprete B., Betz K.S., Friedman R., Varro A., Tycko B., Wang T.C. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011;19(2):257–72. doi: 10.1016/j.ccr.2011.01.020.

70. Tomchuck S.L., Zwezdaryk K.J., Coffelt S.B., Waterman R.S., Danka E.S., Scandurro A.B. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008;26(1):99–107. doi: 10.1634/stemcells.2007-0563.

71. Waterman R.S., Tomchuck S.L., Henkle S.L., Betancourt A.M. A new mesenchymal stem cell (MSC) paradigm: polarization into a proinflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010;5(4):e10088. doi: 10.1371/journal.pone.0010088.

72. Waterman R.S., Henkle S.L., Betancourt A.M. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2- treatment promotes tumor growth and metastasis. PLoS One 2012;7(9):e45590. doi: 10.1371/journal.pone.0045590.

73. Griffin M.D., Elliman S.J., Cahill E., English K., Ceredig R., Ritter T. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots? Stem Cells 2013;31(10):2033–41. doi: 10.1002/stem.1452.

74. Djouad F., Plence P., Bony C., Tropel P., Apparailly F., Sany J., Noel D., Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102(10):3837–44. doi: 10.1182/blood-2003-04-1193.

75. Ljujic B., Milovanovic M., Volarevic V., Murray B., Bugarski D., Przyborski S., Arsenijevic N., Lukic M.L., Stojkovich M. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Sci Rep 2013;3:2298. doi: 10.1038/srep02298.

76. Nemeth K., Leelahavanichkul A., Yuen P.S., Mayer B., Parmelee A., Doi K., Robey P.G., Leelahavanichkul K., Koller B.H., Brown J.M., Hu X., Jelinek I., Star R.A., Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009;15(1):42–9. doi: 10.1038/nm.1905.

77. Spaggiari G.M., Abdelrazik H., Becchetti F., Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSCderived prostaglandin E2. Blood 2009;113(26):6576–83. doi: 10.1182/blood-2009-02-203943.

78. Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815–22. doi: 10.1182/blood-2004-04-1559.

79. Montesinos J.J., de L. Mora-Garcia M., Mayani H., Flores-Figueroa E., Garcia-Rocha R., Fajardo-Orduna G.R., Castro-Manrreza M.E., Weiss-Steider B., Monroy-Garcia A. In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev 2013;22(18):2508–19. doi: 10.1089/scd.2013.0084.

80. Razmkhah M., Jaberipour M., Erfani N., Habibagahi M., Talei A.R., Ghaderi A. Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 2011;266(2):116–22. doi: 10.1016/j.cellimm.2010.09.005.

81. Mellor A.L., Munn D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 1999;20(10):469–73. doi: 10.1016/s0167-5699(99)01520-0.

82. Uyttenhove C., Pilotte L., Theate I., Stroobant V., Colau D., Parmentier N., Boon T., van den Eynde B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9(10):1269–74. doi: 10.1038/nm934.

83. Meisel R., Zibert A., Laryea M., Gobel U., Daubener W., Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103(12):4619–21. doi: 10.1182/blood-2003-11-3909.

84. Maby-El Hajjami H., Ame-Thomas P., Pangault C., Tribut O., DeVos J., Jean R., Bescher N., Monvoisin C., Dulong J., Lamy T., Fest T., Tarte K. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 2009;69(7):3228–37. doi: 10.1158/0008-5472.CAN-08-3000.

85. Han Z., Tian Z., Lv G., Zhang L., Jiang G., Sun K., Wang C., Bu X., Li R., Shi Y., Wu M., Wei L. Immunosuppressive eff ect of bone marrowderived mesenchymal stem cells in infl ammatory microenvironment favours the growth of B16 melanoma cells. J Cell Mol Med 2011;15(11):2343–52. doi: 10.1111/j.1582-4934.2010.01215.x.

86. Ren G., Zhao X., Wang Y., Zhang X., Chen X., Xu C., Yuan Z.R., Roberts A.I., Zhang L., Zheng B., Wen T., Han Y., Rabson A.B., Tischfi eld J.A., Shao C., Shi Y. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 2012;11(6):812–24. doi: 10.1016/j.stem.2012.08.013.

87. Guilloton F., Caron G., Menard C., Pangault C., Ame-Thomas P., Dulong J., De Vos J., Rossille D., Henry C., Lamy T., Fouquet O., Fest T., Tarte K. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 2012;119(11):2556–67. doi: 10.1182/blood-2011-08-370908.

88. Daverey A., Drain A.P., Kidambi S. Physical Intimacy of Breast Cancer Cells with Mesenchymal Stem Cells Elicits Trastuzumab Resistance through Src Activation. Sci Rep 2015;5:13744. doi: 10.1038/srep13744.

89. Skolekova S., Matuskova M., Bohac M., Toro L., Durinikova E., Tyciakova S., Demkova L., Gursky J., Kucerova L. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor eff ect in breast cancer cells. Cell Commun Signal 2016;14:4. doi: 10.1186/s12964-016-0127-0.

90. Teng I.W., Hou P.C., Lee K.D., Chu P.Y., Chu P.Y., Yeh K.T., Jin V.X., Tseng M.J., Tsai S.J., Chang Y.S., Wu C.S., Sun H.S., Tsai K.D., Jeng L.B., Nephew K.P., Huang T.H., Hsiao S.H., Leu Y.W. Targeted methylation of two tumor suppressor genes is suffi cient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res 2011;71(13):4653–63. doi: 10.1158/0008-5472.CAN-10-3418.

91. Ono M., Kosaka N., Tominaga N., Yoshioka Y., Takeshita F., Takahashi R.U., Yoshida M., Tsuda H., Tamura K., Ochiya T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014;7(332):ra63. doi: 10.1126/scisignal.2005231.

92. Bliss S.A., Sinha G., Sandiford O., Williams L., Engelberth D.J., Guiro K., Isenalumhe L.L., Greco S.J., Ayer S., Bryan M., Kumar R., Ponzio N., Rameshwar P. Mesenchymal stem cell-derived exosomes stimulates cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 2016;76(19):5832–44. doi: 10.1158/0008-5472.CAN-16-1092.

93. Roodhart J.M., Daenen L.G., Stigter E.C., Prins H.J., Gerrits J., Houthuijzen J.M., Gerritsen M.G., Schipper H.S., Backer M.J., van Amersfoort M., Vermaat J.S., Moerer P., Ishihara K., Kalkhoven E., Beijnen J.H., Derksen P.W., Medema R.H., Martens A.C., Brenkman A.B., Voest E.E. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011;20(3):370–83. doi: 10.1016/j.ccr.2011.08.010.

94. Sugrue T., Brown J.A., Lowndes N.F., Ceredig R. Multiple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines. Stem Cells 2013;31(1):137–45. doi: 10.1002/stem.1222.

95. Beckermann B.M., Kallifatidis G., Groth A., Frommhold D., Apel A., Mattern J., Salnikov A.V., Moldenhauer G., Wagner W., Diehlmann A., Saff rich R., Schubert M., Ho A.D., Giese N., Buchler M.W., Friess H., Buchler P., Herr I. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008;99(4):622–31. doi: 10.1038/sj.bjc.6604508.

96. Wang H.H., Cui Y.L., Zaorsky N.G., Lan J., Deng L., Zeng X.L., Wu Z.Q., Tao Z., Guo W.H., Wang Q.X., Zhao L.J., Yuan Z.Y., Lu Y., Wang P., Meng M.B. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett 2016;375(2):349–59. doi: 10.1016/j.canlet.2016.02.033.

97. Zhu W., Huang L., Li Y., Zhang X., Gu J., Yan Y., Xu X., Wang M., Qian H., Xu W. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 2012;315(1):28–37. doi: 10.1016/j.canlet.2011.10.002.

98. Huang W.H., Chang M.C., Tsai K.S., Hung M.C., Chen H.L., Hung S.C. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2013;32(37):4343–54. doi: 10.1038/onc.2012.458.

99. Kozlowski L., Zakrzewska I., Tokajuk P., Wojtukiewicz M.Z. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 2003;48:82–4. PMID: 14737948.

100. Ho I.A., Toh H.C., Ng W.H., Teo Y.L., Guo C.M., Hui K.M., Lam P.Y. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 2013;31(1):146–55. doi: 10.1002/stem.1247.

101. Roccaro A.M., Sacco A., Maiso P., Azab A.K., Tai Y.T., Reagan M., Azab F., Flores L.M., Campigotto F., Weller E., Anderson K.C., Scadden D.T., Ghobrial I.M. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013;123(4):1542–55. doi: 10.1172/JCI66517.

102. Sun B., Roh K-H., Park J-P., Lee S-R., Park S-B., Jung J-W., Kang S-K., Lee Y-S., Kang K-S. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009;11(3):289–98, 1 p following 298. doi: 10.1080/14653240902807026.

103. Qiao L., Xu Z., Zhao T., Zhao Z., Shi M., Zhao R.C., Ye L., Zhang X. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008;18(4):500–7. doi: 10.1038/cr.2008.40.

104. Otsu K., Das S., Houser S.D., Quadri S.K., Bhattacharya S., Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009;113(18):4197–205. doi: 10.1182/blood-2008-09-176198.

105. Lee R.H., Kim B.C., Choi I.S., Kim H., Choi H.S., Suh K.T., Bae Y.C., Jung J.S. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004;14(4–6):311–24. doi: 10.1159/000080341.

106. Wagner W., Wein F., Seckinger A., Frankhauser M., Wirkner U., Krause U., Blake J., Schwager C., Eckstein V., Ansorge W., Ho A.D. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33(11):1402–16. doi: 10.1016/j.exphem.2005.07.003.

107. Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A. Clarifi cation of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005;7(5):393–5. doi: 10.1080/14653240500319234.

108. Riekstina U., Cakstina I., Parfejevs V., Hoogduijn M., Jankovskis G., Muiznieks I., Muceniece R., Ancans J. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 2009;5(4):378–86. doi: 10.1007/s12015-009-9094-9.

109. Brennen W.N., Chen S., Denmeade S.R., Isaaks J.T. Quantifi cation of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer. Oncotarget 2013;4(1):106–17. doi: 10.18632/oncotarget.805.

110. Lee M.W., Ryu S., Kim D.S., Lee J.W., Sung K.W., Koo H.H., Yoo K.H. Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019;33(3):597–611.

111. Pessina A., Piccirillo M., Mineo E., Catalani P., Gribaldo L., Marafante E., Neri M.G., Raixnondi A. Role of SR-4987 stromal cells in the modulation of doxorubicin toxicity to in vitro granulocyte-macrophage progenitors (CFU-GM). Life Sci 1993;65(5):513–23. doi: 10.1016/S0024-3205(99)00272-6.

112. Pascucci L., Cocce V., Bonomi A., Ami D., Ceccarelli P., Ciusani E., Viganò L., Locatelli A., Sisto F., Doglia S.M., Parati E., Bernardo M.E., Muraca M., Alessandr G., Bondiolotti G., Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 2014;192:262–70. doi: 10.1016/j.jconrel.2014.07.042.

113. Cocce V., Farronato D., Brini A.T., Masia C., Giannì A.B., Piovani G., Sisto F., Alessandri G., Angiero F., Pessina A. Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Sci Rep 2017;7(1):9376. doi: 10.1038/s41598-017-09175-4.

114. Bonomi A., Steimberg N., Benetti A., Berenzi A., Alessandri G., Pascucci L., Boniotti J., Coccè V., Sordi V., Pessina A., Mazzoleni G. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematol Oncol 2017;35(4):693–702. doi: 10.1002/hon.2306.

115. Енукашвили Н.И., Коткас И.Е., Иволгин Д.А., Боголюбов Д.С., Котова А.В., Боголюбова И.О., Багаева В.В., Левчук К.А., Масленникова И.И., Артамонов А.Ю., Марченко Н.В., Миндукшев И.В. Детектирование клеток, содержащих интернализованные мультидоменные магнитные наночастицы оксида железа (II, III), методом магнитно-резонансной томографии. Журнал технической физики 2020;90(9):1418–27.

116. Roger M., Clavreul A., Venier-Julienne M.C., Passirani C., Sindji L., Schiller P., Montero-Menei C., Menei P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 2010;31(32):8393–401. doi: 10.1016/j.biomaterials.2010.07.048.

117. Li Y., Zhou Y., Li X., Sun J., Ren Z., Wen W., Yang X., Han G. A Facile Approach to Upconversion Crystalline CaF2 : Yb(3+),Tm(3+)@mSiO2 Nanospheres for Tumor Therapy. RSC Adv 2016;6(44):38365–70. doi: 10.1039/C6RA04167A.

118. Banerji S.K., Hayes M.A. Examination of nonendocytotic bulk transport of nanoparticles across phospholipid membranes. Langmuir 2007;23(6):3305–13. doi: 10.1021/la0622875.

119. Sadhukha T., O’Brien T.D., Prabha S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release 2014;196:243–51. doi: 10.1016/j.jconrel.2014.10.015.

120. Li L., Guan Y., Liu H., Hao N., Liu T., Meng X., Fu C., Li Y., Qu Q., Zhang Y., Ji S., Chen L., Chen D., Tang F. Silica nanorattledoxorubicinanchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011;5(9):7462–70. doi: 10.1021/nn202399w.

121. Wang W., Li W., Ou L., Flick E., Mark P., Nesselmann C., Lux C.A., Gatzen H-H., Kaminski A., Liebold A., Lützow K., Lendlein A., Li R-K., Steinhoff G., Ma N. Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. J Cell Mol Med 2011;15(9):1989–98. doi:10.1111/j.1582-4934.2010.01130.x.

122. Huang X., Zhang F., Wang H., Niu G., Choi K.Y., Swierczewska M., Zhang G., Gao H., Wang Z., Zhu L., Choi H.S., Lee S., Chen X. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 2013;34(7):1772–80. doi: 10.1016/j.biomaterials.2012.11.032.

123. Layek B., Sadhukha T., Panyam J., Prabha S. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Effi cacy of Anticancer Drug Through True Active Tumor Targeting. Mol Cancer Ther 2018;17(6):1196–206. doi: 10.1158/1535-7163.MCT-17-0682.

124. Moku G., Layek B., Trautman L., Putnam S. Improving Payload Capacity and Anti-Tumor Effi cacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles. Cancers (Basel) 2019;11(4):491. doi: 10.3390/cancers11040491.

125. Marofi F., Vahedi G., Biglari A., Esmaeilzadeh A., Athari S.S. Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer. Front Immunol 2017;8:1770. doi: 10.3389/fimmu.2017.01770.

126. Zhang J., Kale V., Chen M. Gene-directed enzyme prodrug therapy. AAPS J 2015;17(1):102–10. doi: 10.1208/s12248-014-9675-7.

127. Tsao A.S., Kim E.S., Hong W.K. Chemoprevention of cancer. CA Cancer J Clin 2004;54(3):150–80. doi: 10.3322/canjclin.54.3.150.

128. Kucerova L., Altanerova V., Matuskova M., Tyciakova S., Altaner C. Adipose Tissue-Derived Human Mesenchymal Stem Cells Mediated Prodrug Cancer Gene Therapy. Cancer Res 2007;67(13):6304–13. doi: 10.1158/0008-5472.CAN-06-4024.

129. Alieva M., Bago J.R., Aguilar E., Soler-Botija C., Villa O.F., Molet J., Gambhir S.S., Rubio N., Blanco J. Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PloS One 2012;7(4):e35148. doi: 10.1371/journal.pone.0035148.

130. Kucerova L., Matuskova M., Pastorakova A., Tyciakova S., Jakubikova J., Bohovic R., Altanerova V., Altaner C. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008;10(10):1071–82. doi: 10.1002/jgm.1239.

131. Cavarretta I.T., Altanerova V., Matuskova M., Kucerova L. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010;18(1):223–31. doi: 10.1038/mt.2009.237.

132. Martinez-Quintanilla J., Bhere D., Heidari P., He D., Mahmood U., Shah K. Therapeutic effi cacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells 2013;31(8):1706–14. doi: 10.1002/stem.1355.

133. Studeny M., Marini F.C., Champlin R.E., Zompetta C., Fidler I.J., Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62(13):3603–8. PMID: 12097260.

134. Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Delivery Rev 2012;64(8):739–48. doi: 10.1016/j.addr.2011.06.010.

135. Chen X., Lin X., Zhao J., Shi W., Zhang H., Wang Y., Kan B., Du B., Wang B., Wei Y., Liu Y., Zhao X. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine geneengineered MSCs. Mol Ther 2008;16(4):749–56. doi: 10.1038/mt.2008.3.

136. Duan X., Guan H., Cao Y., Kleinerman E.S. Murine bone marrowderived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 2009;115(1):13–22. doi: 10.1002/cncr.24013.

137. Gao P., Ding Q., Wu Z., Jiang H., Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 2010;290(2):157–66. doi: 10.1016/j.canlet.2009.08.031.

138. Ryu C.H., Park S.H., Park S.A., Kim S.M., Lim J.Y., Jeong C.H., Yoon W-S., Oh W-I., Sung Y.C., Jeun S-S. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord bloodderived mesenchymal stem cells. Hum. Gene Ther 2011;22(6):733–43. doi: 10.1089/hum.2010.187.

139. Jing W., Chen Y., Lu L., Hu X., Shao C., Zhang Y., Zhou X., Zhou Y., Wu L., Liu R., Fan K., Jin G. Human umbilical cord blood-derived mesenchymal stem cells producing IL15 eradicate established pancreatic tumor in syngeneic mice. Mol Cancer Ther 2014;13(8):2127–37. doi: 10.1158/1535-7163.MCT-14-0175.

140. Wong S.H.M., Kong W.Y., Fang C.M., Loh H.S., Chuah L-H., Abdullah S., Ngai S.C. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019;143:81–94. doi: 10.1016/j.critrevonc.2019.08.008.

141. Grisendi G., Bussolari R., Cafarelli L., Petak I., Rasini V., Veronesi E., De Santis G., Spano C., Tagliazzucchi M., Barti-Juhasz H., Scarabelli L., Bambi F., Frassoldati A., Rossi G., Casali C., Morandi U., Horwitz E.M., Paolucci P., Conte P., Dominici M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010;70(9):3718–29. doi: 10.1158/0008-5472.CAN-09-1865.

142. Foppiani E.M., Candini O., Mastrolia I., Murgia A., Grisendi G., Samarelli A.V., Boscaini G., Pacchioni L., Pinelli M., De Santis G., Horwitz E.M., Veronesi E., Dominici M. Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. Stem Cell Res Ther 2019;10(1):101. doi: 10.1186/s13287-019-1200-6.

143. Starnoni M., Pinelli M., De Santis G. Surgical Wound Infections in Plastic Surgery: Simplifi ed, Practical, and Standardized Selection of High-risk Patients. Plast Reconstr Surg Glob Open 2019;7(4):e2202. doi: 10.1097/GOX.0000000000002202.

144. Loebinger M.R., Eddaoudi A., Davies D., Janes S.M. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009;69(10):4134–42. doi: 10.1158/0008-5472.CAN-08-4698.

145. Grisendi G., Bussolari R., Veronesi E., Piccinno S., Burns J.S., De Santis G., Loschi P., Pignatti M., Di Benedetto F., Ballarin R., Di Gregorio C., Guarneri V., Piccinini L., Horwitz E.M., Paolucci P., Conte P., Dominici M. Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res 2011;1(6):787–805. PMID: 22016827.

146. Grisendi G., Spano C., D’Souza N., Rasini V., Veronesi E., Prapa M., Petrachi T., Piccinno S., Rossignoli F., Burns J.S., Fiorcari S., Granchi D., Baldini N., Horwitz E.M., Guarneri V., Conte P., Paolucci P., Dominici M. Mesenchymal progenitors expressing TRAIL induce apoptosis in sarcomas. Stem Cells 2015;33(3):859–869. doi: 10.1002/stem.1903.

147. D’Souza N., Rossignoli F., Golinelli G., Grisendi G., Spano C., Candini O., Osturu S., Catani F., Paolucci P., Horwitz E.M., Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015;13:186. doi: 10.1186/s12916-015-0426-0.

148. Raja J., Ludwig J.M., Gettinger S.N., Schalper K.A., Kim H.S. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer 2018;6(1):140. doi: 10.1186/s40425-018-0458-z.

149. Nakashima H., Kaur B., Chiocca E.A. Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev 2010;21(2-3):119–26. doi: 10.1016/j.cytogfr.2010.02.004.

150. Yong R.L., Shinojima N., Fueyo J., Gumin J., Vecil G.G., Marini F.C., Bogler O., Andreeff M., Lang F.F. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 2009;69(23):8932–40. doi: 10.1158/0008-5472.CAN-08-3873.

151. Xia X., Ji T., Chen P., Li X., Fang Y., Gao Q., Liao S., You L., Xu H., Ma Q., Wu P., Hu W., Wu M., Cao L., Li K., Weng Y., Han Z., Wei J., Liu R., Wang S., Xu G., Wang D., Zhou J., Ma D. Mesenchymal stem cells as carriers and amplifi ers in CRAd delivery to tumors. Mol Cancer 2011;10:134. doi: 10.1186/1476-4598-10-134.

152. Ong H.T., Federspiel M.J., Guo C.M., Ooi L.L., Russell S.J., Peng K.W., Hui K.M. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol 2013;59(5):999–1006. doi: 10.1016/j.jhep.2013.07.010.

153. Kean T.J., Lin P., Caplan A.I., Dennis J.E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int 2013;2013:732742. doi: 10.1155/2013/732742.

154. Nakamizo A., Marini F., Amano T., Khan A., Studeny M., Gumin J., Chen J., Hentschel S., Vecil G., Dembinski J., Andreeff M., Lang F.F. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65(8):3307–18. doi: 10.1158/0008-5472.CAN-04-1874.

155. Yang Y., Zhang X., Lin F., Xiong M., Fan D., Yuan X., Fan D., Yuan X., Lu Y., Song Y., Zhang Y., Hao M., Ye Z., Zhang Y., Wang J., Xiong D. Bispecifi c CD3-HAC carried by E1A-engineered mesenchymal stromal cells against metastatic breast cancer by blocking PD-L1 and activating T cells. J Hematol Oncol 2019;12(1):46. doi: 10.1186/s13045-019-0723-8.

156. Knoop K., Schwenk N., Schmohl K., Muller A., Zach C., Cyran C., Carlsen J., Böning G., Bartenstein P., Göke B., Wagner E., Nelson P.J., Spitzweg C. Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J Nucl Med 2015;56(4):600–6. doi: 10.2967/jnumed.114.146662.

157. Komarova S., Roth J., Alvarez R., Curiel D.T., Pereboeva L. Targeting of mesenchymal stem cells to ovarian tumors via an artifi cial receptor. J Ovarian Res 2010;3:12. doi: 10.1186/1757-2215-3-12.

158. De Becker A., Riet I.V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016;8(3):73–87. doi: 10.4252/wjsc.v8.i3.73.

159. Roth J.C., Curiel D.T., Pereboeva L. Cell vehicle targeting strategies. Gene Ther 2008;15(10):716–29. doi: 10.1038/gt.2008.38.

160. Arbab A.S., Jordan E.K., Wilson L.B., Yocum G.T., Lewis B.K., Frank J.A. In vivo traffi cking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 2004;15(4):351–60. doi: 10.1089/104303404322959506.

161. Fiarresga A., Mata M.F., Cavaco-Goncalves S., Selas M., Simoes I.N., Oliveira E., Carrapiço B., Cardim N., Cabral J.M.S., Ferreira R.C., da Silva C.L. Intracoronary Delivery of Human Mesenchymal/Stromal Stem Cells: Insights from Coronary Microcirculation Invasive Assessment in a Swine Model. PloS One 2015;10(10):e0139870. doi: 10.1371/journal.pone.0139870.

162. Silva L.H., Cruz F.F., Morales M.M., Weiss D.J., Rocco P.R. Magnetic targeting as a strategy to enhance therapeutic eff ects of mesenchymal stromal cells. Stem Cell Res Ther 2017;8(1):58. doi: 10.1186/s13287-017-0523-4.

163. Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018;9(1):1410. doi: 10.1038/s41467-018-03705-y.

164. Kim S.M., Kim D.S., Jeong C.H., Kim J.H., Jeon H.B., Kwon S-J., Jeun S-S., Yang Y.S., Oh W., Chang J.W. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem Biophys Res Commun 2011;407(4):741–6. doi: 10.1016/j.bbrc.2011.03.093.

165. Liu B., Yan L., Zhou M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. Am J Cancer Res 2019;9(2):228–41. PMID: 30906625.

166. Golinelli G., Grisendi G., Prapa M., Bestagno M., Spano C., Rossignoli F., Bambi F., Sardi I., Cellini M., Horwitz E.M., Feletti A., Pavesi G., Dominici M. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 2020;27(7-8):558–70. doi: 10.1038/s41417-018-0062-x.

167. Balyasnikova I.V., Franco-Gou R., Mathis J.M., Lesniak M.S. Genetic modifi cation of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface. J Tissue Eng Regener Med 2010;4(4):247–58. doi: 10.1002/term.228.

168. Segaliny A.I., Cheng J.L., Farhoodi H.P., Toledano M., Yu C.C., Tierra B., Hildebrand L., Liu L., Liao M.J., Cho J., Liu D., Sun L., Gulsen G., Su M-Y., Sah R.L., Zhao W. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells. EBioMedicine 2019;45:39–57. doi: 10.1016/j.ebiom.2019.06.047.

169. Zhu Y., Bassoff N., Reinshagen C., Bhere D., Nowicki M.O., Lawler S.E., Roux J., Shah K. Bi-specifi c molecule against EGFR and death receptors imultaneously targets proliferation and death pathways in tumors. Sci Rep 2017;7(1):2602. doi: 10.1038/s41598-017-02483-9.

170. Einem J., Peter S., Gunther C., Volk H.-D., Grutz G., Salat C., Stoetzer O., Nelson P.J., Michl M., Modest D.P., Holch J.W., Angele M., Bruns C., Niess H., Heinemann V. Treatment of advanced gastrointestinal cancer with genetically modifi ed autologous mesenchymal stem cells – TREAT-ME-1 – a phase I, first in human, first in class trial. Oncotarget 2017;8:80156–66. doi: 10.18632/oncotarget.20964.

171. Niess H., von Einem J.C., Thomas M.N., Michl M., Angele M.K., Huss R., Günther C., Nelson P.J., Bruns C.J., Heinemann V. Treatment of advanced gastrointestinal tumors with genetically modifi ed autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer 2015;15:237. doi: 10.1186/s12885-015-1241-x.

172. Golinelli G., Mastrolia I., Aramini B., Masciale V., Pinelli M., Pacchioni L., Casari G., Dall’Ora M., Pereira-Soares M.B., Damasceno P.K.F., Silva D.N., Dominici M., Grisendi G. Arming Mesenchymal Stromal/ Stem Cells Against Cancer: Has the Time Come? Front Pharmacol 2020;11:529921. doi: 10.3389/fphar.2020.529921.

173. Clinicaltrials.gov. Targeted Stem Cells Expressing TRAIL as a Therapy for Lung Cancer (TACTICAL) [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT03298763. Date of access – 02.03.2021.

174. Clinicaltrials.gov. Mesenchymal stem cells (MSC) for ovarian cancer [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT02530047. Date of access – 02.03.2021.

175. Clinicaltrials.gov. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT02068794. Date of access –02.03.2021.

176. Clinicaltrials.gov. Oncolytic Adenovirus DNX-2401 in Treating Patients With Recurrent High-Grade Glioma [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT03896568. Date of access – 02.03.2021.

177. Spano C., Grisendi G., Golinelli G., Rossignoli F., Prapa M., Bestagno M., Candini O., Petrachi T., Recchia A., Miselli F., Rovesti G., Orsi G., Maiorana A., Manni P., Veronesi E., Piccinno M.S., Murgia A., Pinelli M., Horwitz E.M., Cascinu S., Conte P., Dominici M. Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Sci Rep 2019;9(1):1788. doi: 10.1038/s41598-018-37433-6.

178. Wang Y., Zhang Z., Chi Y., Zhang Q., Xu F., Yang Z., Meng L., Yang S., Yan S., Mao A., Zhang J., Yang Y., Wang S., Cui J., Liang L., Ji Y., Han Z-B., Fang X., Han Z.C. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 2013;4(12):e950. doi: 10.1038/cddis.2013.480.

179. Айзенштадт А.А., Иволгин Д.А., Сказина М.А., Котелевская Е.А., Елсукова Л.В., Золина Т.Л., Пономарцев Н.В., Галактионов Н.К., Галембо И.А., Масленникова И.И., Енукашвили Н.И. Характеристики мезенхимных стромальных клеток пупочного канатика человека при длительном культивировании in vitro. Вестник СЗГМУ им. И.И. Мечникова 2018;10(1):11–9.

180. Tang Q., Chen Q., Lai X., Liu S., Chen Y., Zheng Z., Xie Q., Maldonado M., Cai Z., Qin S., Ho G., Ma L. Malignant Transformation Potentials of Human Umbilical Cord Mesenchymal Stem Cells Both Spontaneously and via 3-Methycholanthrene Induction. PLoS ONE 2013;8(12):e81844. doi: 10.1371/journal.pone.0081844.


Для цитирования:


Иволгин Д.А., Кудлай Д.А. Мезенхимальные мультипотентные стромальные клетки и онкобезопасность: две стороны одной медали или обоюдоострый меч (обзор зарубежной литературы). Российский журнал детской гематологии и онкологии (РЖДГиО). 2021;8(1):64-84. https://doi.org/10.21682/2311-1267-2021-8-1-64-84

For citation:


Ivolgin D.A., Kudlay D.A. Mesenchymal multipotent stromal cells and cancer safety: two sides of the same coin or a double-edged sword (review of foreign literature). Russian Journal of Pediatric Hematology and Oncology. 2021;8(1):64-84. (In Russ.) https://doi.org/10.21682/2311-1267-2021-8-1-64-84

Просмотров: 70


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)