Preview

Российский журнал детской гематологии и онкологии (РЖДГиО)

Расширенный поиск

Генетические основы клинических вариантов токсичности химиотерапии у детей с острым лимфобластным лейкозом (обзор литературы)

https://doi.org/10.21682/2311-1267-2021-8-4-60-70

Полный текст:

Аннотация

Несмотря на значительные успехи в лечении и высокие показатели излечения острого лимфобластного лейкоза (ОЛЛ) у детей, пациенты все еще страдают от многочисленных нежелательных лекарственных реакций, иногда требующих снижения дозы или даже прекращения приема цитотоксических препаратов с вторичным риском рецидива заболевания. Кроме того, исследователи отмечают значительную межиндивидуальную вариабельность лекарственной токсичности и исходов заболевания, что обусловливает роль фармакогенетики (ФГ) в выявлении генетических полиморфизмов в генах-кандидатах для оптимизации лечения заболевания. По всему миру проводятся исследования, направленные на анализ корреляций между генетическими полиморфизмами и проявлениями токсичности в различных этнических группах больных. В России подобные исследования крайне редки.
В данной обзорной статье мы приводим аннотации генов-кандидатов лекарств с наивысшей степенью доказательности их роли в проявлении различных клинических вариантов токсичности и предложения по дальнейшему внедрению ФГ для индивидуализации протоколов лечения детей с ОЛЛ

Об авторах

О. Д. Гурьева
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России; ФГБОУ ДПО РМАНПО Минздрава России
Россия

О.Д. Гурьева: врач-детский онколог отделения детской онкологии и гематологии (химиотерапия гемобластозов) № 1 НИИ детской онкологии и гематологии НМИЦ онкологии им. Н.Н. Блохина

115478, Москва, Каширское шоссе, 23
125993, Москва, ул. Баррикадная, 2/1, стр. 1



М. И. Савельева
ФГБОУ ДПО РМАНПО Минздрава России
Россия

М.И. Савельева: д.м.н., профессор кафедры клинической фармакологии и терапии им. акад. Б.Е. Вотчала

125993, Москва, ул. Баррикадная, 2/1, стр. 1



Т. Т. Валиев
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России; ФГБОУ ДПО РМАНПО Минздрава России
Россия

Т.Т. Валиев: д.м.н., заведующий отделением детской онкологии и гематологии (химиотерапия гемобластозов) № 1 НИИ детской онкологии и гематологии НМИЦ онкологии им. Н.Н. Блохина, профессор кафедры детской онкологии им. акад. Л.А. Дурнова РМАНПО

115478, Москва, Каширское шоссе, 23
125993, Москва, ул. Баррикадная, 2/1, стр. 1



Список литературы

1. Evans W.E., Crews K.R., Pui C.H. A health-care system perspective on implementing genomic medicine: pediatric acute lymphoblastic leukemia as a paradigm. Clin Pharmacol Ther. 2013;94(2):224–9. doi:10.1038/clpt.2013.9.

2. Pavlovic S., Kotur N., Stankovic B., Zukic B., Gasic V., Dokmanovic L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: paving the Way to Personalized Treatment. Genes. 2019;10(3):3. doi:10.3390/genes10030191.

3. Chabner B.A., Longo D.L. Cancer chemotherapy, immunotherapy and biotherapy: Principles and practice, 6th edition. Philadelphia: Wolters Kluwer, 2019. Pp. 49–68.

4. GWAS и психогенетика: консорциумы в поисках ассоциаций. [Электронный ресурс]: https://biomolecula.ru/articles/gwas-ipsikhogenetika-konsortsiumy-v-poiskakh-assotsiatsii (дата обращения 07.12.2021).

5. Pearson T.A., Manolio T.A. How to interpret a genome-wide association study. JAMA. 2008;299(11):1335–44. doi:10.1001/jama.299.11.1335.

6. Lopez-Lopez E., Gutierrez-Camino A., Bilbao-Aldaiturriaga N., Pombar-Gomez M., Martin-Guerrero I., Garcia-Orad A. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(10):1383–98. doi:10.2217/pgs.14.1064.

7. Al-Mahayri Z.N., Patrinos G.P., Ali B.R. Pharmacogenomics in pediatric acute lymphoblastic leukemia: promises and limitations. Pharmacogenomics. 2017;18(7):687–99. doi:10.2217/pgs-2017-0005.

8. Lee S.H.R., Yang J.J. Pharmacogenomics in acute lymphoblastic leukemia. Best Pract Res Clin Haematol. 2017;30(3):229–36. doi:10.1016/j.beha.2017.07.007.

9. Mei L., Ontiveros E.P., Griffiths E.A., Thompson J.E., Wang E.S., Wetzler M. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy. Blood Rev. 2015;29(4):243–9. doi:10.1016/j.blre.2015.01.001.

10. Rudin S., Marable M., Huang R.S. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment. Genomics Proteomics Bioinformatics. 2017;15(2):82–93. doi:10.1016/j.gpb.2016.11.003.

11. Schmiegelow K., Nielsen S.N., Frandsen T.L., Nersting J. Mercaptopurine/Methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol. 2014;36(7):503–17. doi:10.1097/MPH.0000000000000206.

12. Davidsen M.L., Dalhoff K., Schmiegelow K. Pharmacogenetics influence treatment efficacy in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2008;30(11):831–49. doi:10.1097/MPH.0b013e3181868570.

13. Maxwell R.R., Cole P.D. Pharmacogenetic predictors of treatmentrelated toxicity among children with acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2017;12(3):176–86. doi:10.1007/s11899-017-0376-z.

14. Relling M.V., Ramsey L.B. Pharmacogenomics of acute lymphoid leukemia: new insights into treatment toxicity and efficacy. Hematology Am Soc Hematol Educ Program. 2013;2013(1):126–30. doi:10.1182/asheducation-2013.1.126.

15. Zaza G., Cheok M., Krynetskaia N., Thorn C., Stocco G., Hebert J.M., McLeod H., Weinshilboum R.M., Relling M.V., Evans W.E., Klein T.E., Altman R.B. Thiopurine pathway. Pharmacogenet Genomics. 2010;20(9):573–4. doi:10.1097/FPC.0b013e328334338f13.

16. Mikkelsen T.S., Thorn C.F., Yang J.J., Ulrich C.M., French D., Zaza G., Dunnenberger H.M., Marsh S., McLeod H.L., Giacomini K., Becker M.L., Gaedigk R., Leeder J.S., Kager L., Relling M.V., Evans W., Klein T.E., Altman R.B. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics. 2011;21(10):679–86. doi:10.1097/FPC.0b013e328343dd93.

17. Gregers J., Gréen H., Christensen I.J., Dalhoff K., Schroeder H., Carlsen N., Rosthoej S., Lausen B., Schmiegelow K., Peterson C. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(4):372–9. doi:10.1038/tpj.2014.81.

18. Zgheib N.K., Akra-Ismail M., Aridi C., Mahfouz R., Abboud M.R., Solh H., Muwakkit S.A. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2014;24(8):387–96. doi:10.1097/FPC.0000000000000069.

19. El Fayoumi R.I., Hagras M.M., Abozenadaha A., Gari M., Abosoudah I., Shinawi T., Mirza T., Bawazir W. The influence of polymorphisms in the drug transporter, ABCB1 on the toxicity of glucocorticoids in Saudi children with acute lymphoblastic leukaemia. Pharmacol Rep. 2019;71(1):90–5. doi:10.1016/j.pharep.2018.09.010.

20. Liu Y., Yi Y., Sheng Q., Xiaotong W., Fang L., Zhiyan T., Huaiping X., Ajing Z. Association of ABCC2 −24C>T Polymorphism with HighDose Methotrexate Plasma Concentrations and Toxicities in Childhood Acute Lymphoblastic Leukemia. PLoS One. 2014;9(3):e91384. doi:10.1371/journal.pone.0091384.

21. Hareedy M.S., El Desoky E.S., Woillard J.B., Thabet R.H., Ali A.M., Marquet P., Picard N. Genetic variants in 6-mercaptopurine pathway as potential factors of hematological toxicity in acute lymphoblastic leukemia patients. Pharmacogenomics. 2015;16(10):1119–34. doi:10.2217/PGS.15.62.

22. Tanaka Y., Nakadate H., Kondoh K., Nakamura K., Koh K., Manabe A. Interaction between NUDT15 and ABCC4 variants enhances intolerability of 6-mercaptopurine in Japanese patients with childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2018;18(2):275–80. doi:10.1038/tpj.2017.12.

23. Gregers J., Christensen I.J., Dalhoff K., Lausen B., Schroeder H., Rosthoej S., Carlsen N., Schmiegelow K., Peterson C. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115(23):4671–7. doi:10.1182/blood-2010-01-256958.

24. Eldem I., Yavuz D., Cumaogullari O., Özge İ., Talia Ü.İ., Elif E.M., Doğanay E., Özdağ H., Şatiroğlu-Tufan N.L., Uysal L. SLCO1B1 Polymorphisms are Associated With Drug Intolerance in Childhood Leukemia Maintenance Therapy. J Pediatr Hematol Oncol. 2018;40(5):e289–94. doi:10.1097/MPH.0000000000001153.

25. Marino S., Verzegnassi F., Tamaro P., Stocco G., Bartoli F., Decorti G., Rabusin M. Response to glucocorticoids and toxicity in childhood acute lymphoblastic leukemia: role of polymorphisms of genes involved in glucocorticoid response. Pediatr Blood Cancer. 2009;53(6):984–91. doi:10.1002/pbc.22163.

26. Smid A., Karas-Kuzelicki N., Jazbec J. PACSIN2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy. Sci Rep. 2016;6:30244. doi:10.1038/srep30244.

27. Lennard L., Cartwright C.S., Wade R., Vora A. Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics. Br J Haematol. 2015;169(2):228–40. doi:10.1111/bjh.13240.

28. Milosevic G., Kotur N., Krstovski N., Lazic J., Zukic B., Stankovic B., Janic D., Katsila T., Patrinos G.P., Pavlovic S., Dokmanovic L. Variants in TPMT, ITPA, ABCC4 and ABCB1 Genes As Predictors of 6-mercaptopurine Induced Toxicity in Children with Acute Lymphoblastic Leukemia. J Med Biochem. 2018;37(3):320–7. doi:10.1515/jomb-2017-0060.

29. Albayrak M., Konyssova U., Kaya Z., Gursel T., Guntekin S., Percin E.F., Kocak U. Thiopurine methyltransferase polymorphisms and mercaptopurine tolerance in Turkish children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2011;68(5):1155–9. doi:10.1007/s00280-011-1599-7.

30. Liang D.C., Yang C.P., Liu H.C., Jaing T.H., Chen S.H., Hung I.J., Yeh T.C., Lin T.H., Lai C.L., Lai C.Y., Shih L.Y. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia. Pharmacogenomics J. 2016;16(6):536–9. doi:10.1038/tpj.2015.75.

31. Soler A.M., Olano N., Méndez Y., Lopes A., Silveira A., Dabezies A., Castillo L., da Luz J.A. TPMT and NUDT15 genes are both related to mercaptopurine intolerance in acute lymphoblastic leukaemia patients from Uruguay. Br J Haematol. 2018;181(2):252–5. doi:10.1111/bjh.

32. Moriyama T., Nishii R., Perez-Andreu V., Yang W., Klussmann F.A., Zhao X., Lin T.N., Hoshitsuki K., Nersting J., Kihira K., Hofmann U., Komada Y., Kato M., McCorkle R., Li L., Koh K., Najera C.R., Kham S.K., Isobe T., Chen Z., Chiew E.K., Bhojwani D., Jeffries C., Lu Y., Schwab M., Inaba H., Pui C.H., Relling M.V., Manabe A., Hori H., Schmiegelow K., Yeoh A.E., Evans W.E., Yang J.J. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48(4):367–73. doi:10.1038/ng.3508.

33. Yang J.J., Landier W., Yang W., Liu C., Hageman L., Cheng C., Pei D., Chen Y., Crews K.R., Kornegay N., Wong F.L., Evans W.E., Pui C.H., Bhatia S., Relling M.V. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–42. doi:10.1200/JCO.2014.59.4671.

34. Zhou H., Li L., Yang P. Optimal predictor for 6-mercaptopurine intolerance in Chinese children with acute lymphoblastic leukemia: NUDT15, TPMT, or ITPA genetic variants? BMC Cancer. 2018;18(1):516. doi:10.1186/s12885-018-4398-2.

35. Khera S., Trehan A., Bhatia P., Singh M., Bansal D., Varma N. Prevalence of TPMT, ITPA and NUDT15 genetic polymorphisms and their relation to 6MP toxicity in north Indian children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2019;83(2):341–8. doi:10.1007/s00280-018-3732-3.

36. Moradveisi B., Muwakkit S., Zamani F., Ghaderi E., Mohammadi E., Zgheib N.K. TPMT, ITPA and NUDT15 Genetic Polymorphisms Predict 6-Mercaptopurine Toxicity in Middle Eastern Children With Acute Lymphoblastic Leukemia. Front Pharmacol. 2019;10:916. doi:10.3389/fphar.2019.00916.

37. Huang L., Tissing W.J., de Jonge R., van Zelst B.D., Pieters R. Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia. 2008;22(9):1798–800. doi:10.1038/leu.2008.66.

38. Chiusolo P., Reddiconto G., Casorelli I., Laurenti L., Sorà F., Mele L., Annino L., Leone G., Sica S. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol. 2002;13(12):1915–8. doi:10.1093/annonc/mdf322.

39. Shimasaki N., Mori T., Torii C., Sato R., Shimada H., Tanigawara Y., Kosaki K., Takahashi T. Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2008;30(5):347–52. doi:10.1097/MPH.0b013e318165b25d.

40. Kodidela S., Pradhan S.C., Dubashi B., Basu D. Influence of dihydrofolate reductase gene polymorphisms rs408626 (−317A>G) and rs442767 (−680C>A) on the outcome of methotrexate-based maintenance therapy in South Indian patients with acute lymphoblastic leukemia. Eur J Clin Pharmacol. 2015;71(11):1349–58. doi:10.1007/s00228-015-1930-z.

41. Salazar J., Altés A., del Río E., Estella J., Rives S., Tasso M., Navajas A., Molina J., Villa M., Vivanco J.L., Torrent M., Baiget M., Badell I. Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia. Pharmacogenomics J. 2012;12(5):379–85. doi:10.1038/tpj.2011.25.

42. Wang Q., He G., Hou M. Cell Cycle Regulation by Alternative Polyadenylation of CCND1. Sci Rep. 2018;8(1):6824. doi:10.1038/s41598-018-25141-0.

43. Garcia-Bournissen F., Moghrabi A., Krajinovic M. Therapeutic responses in childhood acute lymphoblastic leukemia (ALL) and haplotypes of gamma glutamyl hydrolase (GGH) gene. Leuk Res. 2007;31(7):1023–5. doi:10.1016/j.leukres.2006.08.007.

44. Oosterom N., Berrevoets M., den Hoed M.A.H., Zolk O., Hoerning S., Pluijm S.M.F, Pieters R., de Jonge R., Tissing W.J.E, van den Heuvel-Eibrink M.M., Heil S.G. The role of genetic polymorphisms in the thymidylate synthase (TYMS) gene in methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2018;28(10):223–9. doi:10.1097/FPC.0000000000000352.

45. Treviño L.R., Shimasaki N., Yang W., Panetta J.C., Cheng C., Pei D., Chan D., Sparreboom A., Giacomini K.M., Pui C.H., Evans W.E., Relling M.V. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972–8. doi:10.1200/JCO.2008.20.4156.

46. Lopez-Lopez E., Ballesteros J., Piñan M.A., Sanchez de Toledo J., Garcia de Andoin N., Garcia-Miguel P., Navajas A., Garcia-Orad A. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics. 2013;23(2):53–61. doi:10.1097/FPC.0b013e32835c3b24.

47. den Hoed M.A., Lopez-Lopez E., te Winkel M.L., Tissing W., de Rooij J.D., Gutierrez-Camino A., Garcia-Orad A., den Boer E., Pieters R., Pluijm S.M., de Jonge R., van den Heuvel-Eibrink M.M. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(3):248–54. doi:10.1038/tpj.2014.63.

48. Roy Moulik N., Kumar A., Agrawal S., Awasthi S., Mahdi A.A., Kumar A. Role of folate status and methylenetetrahydrofolate reductase genotype on the toxicity and outcome of induction chemotherapy in children with acute lymphoblastic leukemia. Leuk Lymphoma. 2015;56(5):1379–84. doi:10.3109/10428194.2014.947608.

49. Hunger S.P., Loh M.L., Whitlock J.A., Winick N.J., Carroll W.L., Devidas M., Raetz E.A. COG Acute Lymphoblastic Leukemia Committee. Children’s Oncology Group’s 2013 blueprint for research: acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(6):957–63. doi:10.1002/pbc.24420.

50. Gutierrez-Camino A., Martin-Guerrero I., Garcia-Orad A. PNPLA3 rs738409 and Hepatotoxicity in Children With B-cell Acute Lymphoblastic Leukemia: A Validation Study in a Spanish Cohort. Clin Pharmacol Ther. 2017;102(6):906. doi:10.1002/cpt.756.

51. Kienesberger P.C., Oberer M., Lass A., Zechner R. Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res. 2009;50(Suppl):S63–8. doi:10.1194/jlr.R800082-JLR200.

52. He X., Yao P., Li M., Liang H., Liu Y., Du S., Zhang M., Sun W., Wang Z., Hao X., Yu Z., Gao F., Liu X., Tong R. A Risk Scoring Model for High-Dose Methotrexate-Induced Liver Injury in Children With Acute Lymphoblastic Leukemia Based on Gene Polymorphism Study. Front Pharmacol. 2021;12:726229. doi:10.3389/fphar.2021.726229.

53. Liu Y., Fernandez C.A., Smith C., Yang W., Cheng C., Panetta J.C., Kornegay N., Liu C., Ramsey L.B., Karol S.E., Janke L.J., Larsen E.C., Winick N., Carroll W.L., Loh M.L., Raetz E.A., Hunger S.P., Devidas M., Yang J.J., Mullighan C.G., Zhang J., Evans W.E., Jeha S., Pui C.H., Relling M.V. Genome-Wide Study Links PNPLA3 Variant With Elevated Hepatic Transaminase After Acute Lymphoblastic Leukemia Therapy. Clin Pharmacol Ther. 2017;102(1):131–40. doi:10.1002/cpt.629.

54. Ongaro A., De Mattei M., Della Porta M.G., Rigolin G., Ambrosio C., Di Raimondo F., Pellati A., Masieri F.F., Caruso A., Catozzi L., Gemmati D. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica. 2009;94(10):1391–8. doi:10.3324/haematol.2009.008326.

55. Tanaka Y., Manabe A., Nakadate H. Methylenetetrahydrofolate reductase gene haplotypes affect toxicity during maintenance therapy for childhood acute lymphoblastic leukemia in Japanese patients. Leuk Lymphoma. 2014;55(5):1126–31. doi:10.3109/10428194.2013.825902.

56. Argyriou A.A., Bruna J., Marmiroli P., Cavaletti G. Chemotherapyinduced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82(1):51–77. doi:10.1016/j.critrevonc.2011.04.012.

57. Abaji R., Ceppi F., Patel S., Gagné V., Xu C.J., Spinella J.F., Colombini A., Parasole R., Buldini B., Basso G., Conter V., Cazzaniga G., Leclerc J.M., Laverdière C., Sinnett D., Krajinovic M. Genetic risk factors for VIPN in childhood acute lymphoblastic leukemia patients identifi ed using whole-exome sequencing. Pharmacogenomics. 2018;19(15):1181–93. doi:10.2217/pgs-2018-0093.

58. Mroß C., Marko M., Munck M., Glöckner G., Motameny S., Altmüller J., Noegel A.A., Eichinger L., Peche V.S., Neumann S. Depletion of Nesprin-2 is associated with an embryonic lethal phenotype in mice. Nucleus. 2018;9(1):503–15. doi:10.1080/19491034.2018.1523664.

59. Ceppi F., Langlois-Pelletier C., Gagné V., Rousseau J., Ciolino C., De Lorenzo S., Kevin K.M., Cijov D., Sallan S.E., Silverman L.B., Neuberg D., Kutok J.L., Sinnett D., Laverdière C., Krajinovic M. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(8):1105–16. doi:10.2217/pgs.14.68.

60. Lopez-Lopez E., Gutierrez-Camino A., Astigarraga I., Navajas A., Echebarria-Barona A., Garcia-Miguel P., Garcia de Andoin N., Lobo C., Guerra-Merino I., Martin-Guerrero I., Garcia-Orad A. Vincristine pharmacokinetics pathway and neurotoxicity during early phases of treatment in pediatric acute lymphoblastic leukemia. Pharmacogenomics. 2016;17(7):731–41. doi:10.2217/pgs-2016-0001.

61. Diouf B., Crews K.R., Lew G., Pei D., Cheng C., Bao J., Zheng J.J., Yang W., Fan Y., Wheeler H.E., Wing C., Delaney S.M., Komatsu M., Paugh S.W., McCorkle J.R., Lu X., Winick N.J., Carroll W.L., Loh M.L., Hunger S.P., Devidas M., Pui C.H., Dolan M.E., Relling M.V., Evans W.E. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA. 2015;313(8):815–23. doi:10.1001/jama.2015.0894.

62. Zhang J., Fei T., Li Z., Zhu G., Wang L., Chen Y.G. BMP induces cochlin expression to facilitate self-renewal and suppress neural differentiation of mouse embryonic stem cells. J Biol Chem. 2013;288(12):8053–60. doi:10.1074/jbc.M112.433995.

63. Li L., Sajdyk T., Smith E.M.L., Chang C.W., Li C., Ho R.H., Hutchinson R., Wells E., Skiles J.L., Winick N., Martin P.L., Renbarger J.L. Genetic Variants Associated With Vincristine-Induced Peripheral Neuropathy in Two Populations of Children With Acute Lymphoblastic Leukemia. Clin Pharmacol Ther. 2019;105(6):1421–8. doi:10.1002/cpt.1324.

64. Bond A.M., Bhalala O.G., Kessler J.A. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol. 2012;72(7):1068–84. doi:10.1002/dneu.22022.

65. Janke L.J., Liu C., Vogel P., Kawedia J., Boyd K.L., Funk A.J., Relling M.V. Primary epiphyseal arteriopathy in a mouse model of steroid-induced osteonecrosis. Am J Pathol. 2013;183(1):19–25. doi:10.1016/j.ajpath.2013.03.004.

66. Maurer T., Zimmermann G., Maurer S., Stegmaier S., Wagner C., Hansch G.M. Inhibition of osteoclast generation: a novel function of the bone morphogenetic protein 7/osteogenic protein 1. Mediators Inflamm. 2012;2012:171209. doi:10.1155/2012/171209.

67. Zhang S., Fantozzi I., Tigno D.D., Yi E.S., Platoshyn O., Thistlethwaite P.A., Kriett J.M., Yung G., Rubin L.J., Yuan J.X. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2003;285(3):L740–54. doi:10.1152/ajplung.00284.200265.

68. Relling M.V., Yang W., Das S., Cook E.H., Rosner G.L., Neel M., Kaste S.C. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol. 2004;22(19):3930–6. doi:10.1200/JCO.2004.11.020.

69. Liu C., Yang W., Devidas M., Cheng C., Pei D., Smith C., Carroll W.L., Raetz E.A., Bowman W.P., Larsen E.C., Maloney K.W., Martin P.L., Mattano L.A. Jr, Winick N.J., Mardis E.R., Fulton R.S., Bhojwani D., Howard S.C., Jeha S., Pui C.H., Hunger S.P., Evans W.E., Loh M.L., Relling M.V. Clinical and Genetic Risk Factors for Acute Pancreatitis in Patients With Acute Lymphoblastic Leukemia. J Clin Oncol. 2016;34(18):2133–40. doi:10.1200/JCO.2015.64.5812.

70. Abaji R., Gagné V., Xu C.J., Spinella J.F., Ceppi F., Laverdière C., Leclerc J.M., Sallan S.E., Neuberg D., Kutok J.L., Silverman L.B., Sinnett D., Krajinovic M. Whole-exome sequencing identified genetic risk factors for asparaginase-related complications in childhood ALL patients. Oncotarget. 2017;8(27):43752–67. doi:10.18632/oncotarget.17959. PMID:28574850.

71. Коркина Ю.С., Валиев Т.Т. L-аспарагиназа: новое об известном препарате. Педиатрическая фармакология. 2021;18(3):227–32. doi:10.15690/pf.v18i3.2282.

72. Fernandez C.A., Stewart E., Panetta J.C., Wilkinson M.R., Morrison A.R., Finkelman F.D., Sandlund J.T., Pui C.H., Jeha S., Relling M.V., Campbell P.K. Successful challenges using native E. coli asparaginase after hypersensitivity reactions to PEGylated E. coli asparaginase. Cancer Chemother Pharmacol. 2014;73(6):1307–13. doi:10.1007/s00280-014-2464-2.

73. Chen S.H., Pei D., Yang W., Cheng C., Jeha S., Cox N.J., Evans W.E., Pui C.H., Relling M.V. Genetic variations in GRIA1 on chromosome 5q33 related to asparaginase hypersensitivity. Clin Pharmacol Ther. 2010;88(2):191–6. doi:10.1038/clpt.2010.94.

74. Kutszegi N., Yang X., Gézsi A., Schermann G., Erdélyi D.J., Semsei Á.F., Szalai C. HLA-DRB1*07:01-HLA-DQA1*02:01-HLADQB1*02:02 haplotype is associated with a high risk of asparaginase hypersensitivity in acute lymphoblastic leukemia. Haematologica. 2017;102(9):1578–86. doi:10.3324/haematol.2017.168211.

75. van der Wouden C.H., Cambon-Thomsen A., Cecchin E., Cheung K.C., Dávila-Fajardo C.L., Deneer V.H., Dolžan V., Ingelman-Sundberg M., Jönsson S., Karlsson M.O., Kriek M., Mitropoulou C., Patrinos G.P., Pirmohamed M., Samwald M., Schaeffeler E., Schwab M., Steinberger D., Stingl J., Sunder-Plassmann G., Toffoli G., Turner R.M., van Rhenen M.H., Swen J.J., Guchelaar H.J. Ubiquitous Pharmacogenomics Consortium. Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium. Clin Pharmacol Ther. 2017;101(3):341–58. doi:10.1002/cpt.602.

76. Volpi S., Bult C.J., Chisholm R.L., Deverka P.A., Ginsburg G.S., Jacob H.J., Kasapi M., McLeod H.L., Roden D.M., Williams M.S., Green E.D., Rodriguez L.L., Aronson S., Cavallari L.H., Denny J.C., Dressler L.G., Johnson J.A., Klein T.E., Leeder J.S., Piquette-Miller M., Perera M., Rasmussen-Torvik L.J., Rehm H.L., Ritchie M.D., Skaar T.C., Wagle N., Weinshilboum R., Weitzel K.W., Wildin R., Wilson J., Manolio T.A., Relling M.V. Research Directions in the Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects. Clin Pharmacol Ther. 2018;103(5):778–86. doi:10.1002/cpt.1048.


Рецензия

Для цитирования:


Гурьева О.Д., Савельева М.И., Валиев Т.Т. Генетические основы клинических вариантов токсичности химиотерапии у детей с острым лимфобластным лейкозом (обзор литературы). Российский журнал детской гематологии и онкологии (РЖДГиО). 2021;8(4):60-70. https://doi.org/10.21682/2311-1267-2021-8-4-60-70

For citation:


Gurieva O.D., Savelyeva M.I., Valiev T.T. Genetic basis of clinical variants of chemotherapy toxicity in children with acute lymphoblastic leukemia (literature review). Russian Journal of Pediatric Hematology and Oncology. 2021;8(4):60-70. (In Russ.) https://doi.org/10.21682/2311-1267-2021-8-4-60-70

Просмотров: 336


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)