Preview

Russian Journal of Pediatric Hematology and Oncology

Advanced search

A spectrum of overgrowth syndromes associated with the PIK3CA mutation. Literature review

https://doi.org/10.21682/2311-1267-2022-9-1-29-44

Abstract

PIK3CA-Related Overgrowth Spectrum (PROS) refers to rare syndromes, which are characterized by malformations and excessive tissue growth and caused by somatic mutations in the PIK3CA gene occurring during embryogenesis. This article discusses the pathogenesis, clinical picture, diagnosis and treatment of these syndromes.

Some of the illustrations used in this article are copied from other resources, the rights of the authors are respected and not violated. The appropriate permissions from the journals have been obtained.

About the Authors

G. B. Sagoyan
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Researcher, Pediatric Oncologist of Pediatric Oncology Department of Surgical Methods of Treatment with Chemotherapy No. 2 (Tumors of Thoracoabdominal Localization) of Research Institute of Pediatric Oncology and Hematology, SPIN-code: 6304-0159

Moscow



I. S. Kletskaya
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Pathologist Pathology Department at Russian Children’s Clinical Hospital

Moscow



E. N. Imyanitov
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Corresponding Member of RAS, Dr. of Sci. (Med.), Professor, Head of the Research Department of Biology of Tumor Growth and the Laboratory of Molecular Oncology, SPIN-code: 1909-7323

Saint Petersburg



Yu. M. Mareeva
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Pediatric Oncologist of Advisory Department

Moscow



N. V. Zhukov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation

Dr. of Sci. (Med.), Professor, Head of Multidisciplinary Oncology Department, ResearcherID: I-3833-2018, SPIN-code: 8151-9305

Moscow



R. A. Khagurov
N.F. Filatov Children’s City Clinical Hospital, Moscow Department of Health
Russian Federation

Surgeon of the Department of Reconstructive Microsurgery

Moscow



A. M. Suleymanova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Researcher, Pediatric Oncologist of Pediatric Oncology Department of Surgical Methods of Treatment with Chemotherapy No. 2 (Tumors of Thoracoabdominal Localization) of Research Institute of Pediatric Oncology and Hematology

Moscow



References

1. Parker V.E.R., Keppler-Noreuil K.M., Faivre L., Luu M., Oden N.L., De Silva L., Sapp J.C., Andrews K., Bardou M., Chen K.Y., Darling T.N., Gautier E., Goldspiel B.R., Hadj-Rabia S., Harris J., Kounidas G., Kumar P., Lindhurst M.J., Loffroy R., Martin L., Phan A., Rother K.I., Widemann B.C., Wolters P.L., Coubes Ch., Pinson L., Willems M., Vincent-Delorme C., PROMISE Working Group; Vabres P., Semple R.K., Biesecker L.G. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genet Med. 2019;21(5):1189–98. doi: 10.1038/s41436-018-0297-9.

2. Keppler-Noreuil K.M., Rios J.J., Parker V.E.R., Semple R.K., Lindhurst M.J., Sapp J.C., Alomari A., Ezaki M., Dobyns W., Biesecker L.G. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–95. doi: 10.1002/ajmg.a.36836.

3. Hillmann P., Fabbro D. PI3K/mTOR pathway inhibition: opportunities in oncology and rare genetic diseases. Int J Mol Sci. 2019;20(22):5792. doi: 10.3390/ijms20225792.

4. Hennessy B.T., Smith D.L., Ram P.T., Lu Y., Mills G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004. doi: 10.1038/nrd1902.

5. Adams D.M., Ricci K.W. Vascular anomalies: diagnosis of complicated anomalies and new medical treatment options. Hematol Oncol Clin North Am. 2019;33(3):455–70. doi: 10.1016/j.hoc.2019.01.011.

6. Keppler-Noreuil K.M., Parker V.E., Darling T.N., Martinez-Agosto J.A. Somatic overgrowth disorders of the PI3K/AKT/ mTOR pathway & therapeutic strategies. Am J Med Genet C Semin Med Genet. 2016;172(4):402–21. doi: 10.1002/ajmg.c.31531.

7. Nguyen H.L., Boon L.M., Vikkula M. Vascular anomalies caused by abnormal signaling within endothelial cells: targets for novel therapies. Semin Intervent Radiol. 2017;34(3):233–8. doi: 10.1055/s-0037-1604296.

8. Fruman D.A., Chiu H., Hopkins B.D., Bagrodia S., Cantley L.C., Abraham R.T. The PI3K pathway in human disease. Cell. 2017;170(4):605–35. doi: 10.1016/j.cell.2017.07.029.

9. Goncalves M.D., Hopkins B.D., Cantley L.C. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N Engl J Med. 2018;379(21):2052–62. doi: 10.1056/NEJMra1704560.

10. Liu P., Cheng H., Roberts T.M., Zhao J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44. doi: 10.1038/nrd2926.

11. Gymnopoulos M., Elsliger M.A., Vogt P.K. Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA. 2007;104(13):5569–74. doi: 10.1073/pnas.0701005104.

12. International Society for the Study of Vascular Anomalies. ISSVA classification for vascular anomalies. Revised 2018. https://www.issva.org/UserFiles/file/ISSVA-Classification-2018.pdf.

13. Canaud G., Hammill A.M., Adams D., Vikkula M., Keppler-Noreuil K.M. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. doi: 10.1186/s13023-021-01929-8.

14. Wassef M., Blei F., Adams D., Alomari A., Baselga E., Berenstein A., Burrows P., Frieden I.J., Garzon M.C., Lopez-Gutierrez J.C., Lord D.J., Mitchel S., Powell J., Prendiville J., Vikkula M., ISSVA Board and Scientific Committee. Vascular Anomalies Classification: Recommendations From the International Society for the Study of Vascular Anomalies. Pediatrics. 2015;136(1):e203–14. doi: 10.1542/peds.2014-3673.

15. Goss J.A., Konczyk D.J., Smits P., Sudduth C.L., Bischoff J., Liang M.G., Greene A.K. Diffuse capillary malformation with overgrowth contains somatic PIK3CA variants. Clin Genet. 2020;97(5):736–40. doi: 10.1111/cge.13702.

16. Hughes M., Hao M., Luu M. PIK3CA vascular overgrowth syndromes: an update. Curr Opin Pediatr. 2020;32(4):539–46. doi: 10.1097/MOP.0000000000000923.

17. Rodriguez-Laguna L., Agra N., Ibañez K., Oliva-Molina G., Gordo G., Khurana N., Hominick D., Beato M., Colmenero I., Herranz G., Torres Canizalez J.M., Rodríguez Pena R., Vallespín E., Martín-Arenas R., Del Pozo Á., Villaverde C., Bustamante A., Ayuso C., Lapunzina P., Lopez-Gutierrez J.C., Dellinger M.T., Martinez-Glez V. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. J Exp Med. 2019;216(2):407–18. doi: 10.1084/jem.20181353.

18. López-Gutiérrez J.C., Lapunzina P. New Syndrome Capillary Malformation of the Lower Lip, Lymphatic Malformation of the Face and Neck, Asymmetry and Partial/Generalized Overgrowth (CLAPO): Report of Six Cases of a New Syndrome/Association. Am J Med Genet A. 2008;146A(20):2583–8. doi: 10.1002/ajmg.a.32517.

19. Flores-Terry M.Á., Zamberk-Majlis P., Cortina-de la Calle M.P., García-Arpa M. CLAPO Syndrome. Actas Dermosifiliogr. 2018;109:180. doi: 10.1016/j.adengl.2017.12.016.

20. Sapp J.C., Turner J.T., van de Kamp J.M., van Dijk F.S., Lowry R.B., Biesecker L.G. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A. 2007;143A(24):2944–58. doi: 10.1002/ajmg.a.32023.

21. Alomari A.I. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18(1):1–7. doi: 10.1097/MCD.0b013e328317a716.

22. Mirzaa G., Graham J.M. Jr, Keppler-Noreuil K., Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Mirzaa G.M., Amemiya A. PIK3CA-Related Overgrowth Spectrum. In: GeneReviews ® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022. PMID: 23946963.

23. Wang S.K., Drucker N.A., Gupta A.K., Marshalleck F.E., Dalsing M.C. Diagnosis and management of the venous malformations of Klippel–Trénaunay syndrome. J Vasc Surg Venous Lymphat Disord. 2017;5(4):587–95. doi: 10.1016/j.jvsv.2016.10.084.

24. Gloviczki P., Driscoll D.J. Klippel–Trenaunay syndrome: current management. Phlebology. 2007;22(6):291–8. doi: 10.1258/026835507782655209.

25. Alomari A.I., Spencer S.A., Arnold R.W., Chaudry G., Kasser J.R., Burrows P.E., Govender P., Padua H.M., Dillon B., Upton J., Taghinia A.H., Fishman S.J., Mulliken J.B., Fevurly R.D., Greene A.K., Landrigan-Ossar M., Paltiel H.J., Trenor C.C., Kozakewich H.P. Fibro-adipose vascular anomaly: clinical-radiologic-pathologic features of a newly delineated disorder of the extremity. J Pediatr Orthop. 2014;34:109–17. doi: 10.1097/BPO.0b013e3182a1f0b8.

26. Shaikh R., Alomari A.I., Kerr C.L., Miller P., Spencer S.A. Cryoablation in fibro-adipose vascular anomaly (FAVA): a minimally invasive treatment option. Pediatr Radiol. 2016;46:1179–86. doi: 10.1007/s00247-016-3576-0.

27. Fernandez-Pineda I., Marcilla D., Downey-Carmona F.J., Roldan S., Ortega-Laureano L., Bernabeu-Wittel J. Lower extremity fibroadipose vascular anomaly (FAVA): a new case of a newly delineated disorder. Ann Vasc Dis. 2014;7:316–9. doi: 10.3400/avd.cr.14-00049.

28. Garde A., Guibaud L., Goldenberg A., Petit F., Dard R., Roume J., Mazereeuw-Hautier J., Chassaing N., Lacombe D., Morice-Picard F., Toutain A., Arpin S., Boccara O., Touraine R., Blanchet P., Coubes C., Willems M., Pinson L., Van Kien P.K., Chiaverini C., Giuliano F., Alessandri J.-L., Mathieu-Dramard M., Morin G., Bursztejn A.C., Mignot C., Doummar D., Rocco F.D., Cornaton J., Nicolas C., Gautier E., Luu M., Bardou M., Sorlin A., Philippe C., Edery P., Rossi M., Carmignac V., Thauvin-Robinet C., Vabres P., Faivre L. Clinical and neuroimaging fi ndings in 33 patients with MCAP syndrome: A survey to evaluate relevant endpoints for future clinical trials. Clin Genet. 2021;99(5):650–61. doi: 10.1111/cge.13918.

29. Mirzaa G., Timms A.E., Conti V., Boyle E.A., Girisha K.M., Martin B., Kircher M., Olds C., Juusola J., Collins S., Park K., Carter M., Glass I., Krägeloh-Mann I., Chitayat D., Parikh A.S., Bradshaw R., Torti E., Braddock S., Burke L., Ghedia S., Stephan M., Stewart F., Prasad C.,Napier M., Saitta S., Straussberg R., Gabbett M., O’Connor B.C., Keegan C.E., Yin L.J., Lai A.H.M., Martin N., McKinnon M., Addor M.C., Boccuto L., Schwartz C.E., Lanoel A., Conway R.L., Devriendt K., Tatton-Brown K., Pierpont M.E., Painter M., Worgan L., Reggin J., Hennekam R., Tsuchiya K., Pritchard C.C., Aracena M., Gripp K.W., Cordisco M., Van Esch H., Garavelli L., Curry C., Goriely A., Kayserilli H., Shendure J., Guerrini R., Dobyns W.B. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9):e87623. doi: 10.1172/jci.insight.87623.

30. Couto J.A., Konczyk D.J., Vivero M.P., Kozakewich H.P.W., Upton J., Fu X., Padwa B.L., Mulliken J.B., Warman M.L., Greene A.K. Somatic PIK3CA mutations are present in multiple tissues of facial infiltrating lipomatosis. Pediatr Res. 2017;82:850–4. doi: 10.1038/pr.2017.155.

31. Peterman C.M., Fevurly R.D., Alomari A.I., Trenor C.C., Adams D.M., Vadeboncoeur S., Liang M.G., Greene A.K., Mulliken J.B., Fishman S.J. Sonographic screening for Wilms tumor in children with CLOVES syndrome. Pediatr Blood Cancer. 2017;64(12). doi: 10.1002/pbc.26684.

32. Postema F.A.M., Hopman S.M.J., Aalfs C.M., Berger L.P.V., Bleeker F.E., Dommering C.J., Jongmans M.C.J., Letteboer T.G.W., Olderode-Berends M.J.W., Wagner A., Hennekam R.C., Merks J.H.M. Childhood tumours with a high probability of being part of a tumour predisposition syndrome; reason for referral for genetic consultation. Eur J Cancer. 2017;80:48–54. doi: 10.1016/j.ejca.2017.04.021.

33. Moore C.A., Toriello H.V., Abuelo D.N., Bull M.J., Curry C.J., Hall B.D., Higgins J.V., Stevens C.A., Twersky S., Weksberg R., Dobyns W.B. Macrocephaly-cutis marmorata telangiectatica congenita: a distinct disorder with developmental delay and connective tissue abnormalities. Am J Med Genet. 1997;70:67–73. PMID: 9129744.

34. Schwartz I.V.D., Felix T.M., Riegel M., Schüler-Faccini L. Atypical macrocephaly-cutis marmorata telangiectatica congenita with retinoblastoma. Clin Dysmorphol. 2002;11:199–202. doi: 10.1097/00019605-200207000-00010.

35. Mills J.R., Moyer A.M., Kipp B.R., Poplawski A.B., Messiaen L.M., Babovic-Vuksanovic D. Unilateral vestibular schwannoma and meningiomas in a patient with PIK3CA-related segmental overgrowth: Co-occurrence of mosaicism for 2 rare disorders. Clin Genet. 2018;93:187–90. doi: 10.1111/cge.13099.

36. Piacitelli A.M., Jensen D.M., Brandling-Bennett H., Gray M.M., Batra M., Gust J., Thaker A., Paschal C., Tsuchiya K., Pritchard C.C., Perkins J., Mirzaa G.M., Bennett J.T. Characterization of a severe case of PIK3CA-related overgrowth at autopsy by droplet digital polymerase chain reaction and report of PIK3CA sequencing in 22 patients. Am J Med Genet A. 2018;176(11):2301–8. doi: 10.1002/ajmg.a.40487.

37. Mirzaa G.M., Conway R.L., Gripp K.W., Lerman-Sagie T., Siegel D.H., de Vries L.S., Lev D., Kramer N., Hopkins E., Graham J.M., Dobyns W.B. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A. 2012;158A(2):269–91. doi: 10.1002/ajmg.a.34402.

38. Dompmartin A., Acher A., Thibon P., Tourbach S., Hermans C., Deneys V., Pocock B., Lequerrec A., Labbé D., Barrellier M.T., Vanwijck R., Vikkula M., Boon L.M. Association of localized intravascular coagulopathy with venous malformations. Arch Dermatol. 2008;144(7):873–7. doi: 10.1001/archderm.144.7.873.

39. Venot Q., Canaud G. [Segmental overgrowth syndromes and therapeutic strategies]. Med Sci (Paris). 2020;36(3):235–42. doi: 10.1051/medsci/2020023.

40. Lindhurst M.J., Sapp J.C., Teer J.K., Johnston J.J., Finn E.M., Peters K., Turner J., Cannons J.L., Bick D., Blakemore L., Blumhorst C., Brockmann K., Calder P., Cherman N., Deardorff M.A., Everman D.B., Golas G., Greenstein R.M., Kato B.M., Keppler-Noreuil K.M., Kuznetsov S.A., Miyamoto R.T., Newman K., Ng D., O’Brien K., Rothenberg S., Schwartzentruber D.J., Singhal V., Tirabosco R., Upton J., Wientroub S., Zackai E.H., Hoag K., Whitewood-Neal T., Robey P.G., Schwartzberg P.L., Darling T.N., Tosi L.L., Mullikin J.C., Biesecker L.G. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365(7):611–9. doi: 10.1056/NEJMoa1104017.

41. Rivière J.B., Mirzaa G.M., O’Roak B.J., Beddaoui M., Alcantara D., Conway R.L., St-Onge J., Schwartzentruber J.A., Gripp K.W., Nikkel S.M., Worthylake T., Sullivan C.T., Ward T.R., Butler H.E., Kramer N.A., Albrecht B., Armour C.M., Armstrong L., Caluseriu O., Cytrynbaum C., Drolet B.A., Innes A.M., Lauzon J.L., Lin A.E., Mancini G.M., Meschino W.S., Reggin J.D., Saggar A.K., Lerman-Sagie T., Uyanik G., Weksberg R., Zirn B., Beaulieu C.L. Finding of Rare Disease Genes (FORGE) Canada Consortium, Majewski J., Bulman D.E., O’Driscoll M., Shendure J., Graham J.M., Boycott K.M., Dobyns W.B. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–40. doi: 10.1038/ng.2331.

42. Kurek K.C., Luks V.L., Ayturk U.M., Alomari A.I., Fishman S.J., Spencer S.A., Mulliken J.B., Bowen M.E., Yamamoto G.L., Kozakewich H.P., Warman M.L. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90(6):1108–15. doi: 10.1016/j.ajhg.2012.05.006.

43. Lee J.H., Huynh M., Silhavy J.L., Kim S., Dixon-Salazar T., Heiberg A., Scott E., Bafna V., Hill K.J., Collazo A., Funari V., Russ C., Gabriel S.B., Mathern G.W., Gleeson J.G. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–5. doi: 10.1038/ng.2329.

44. Poduri A., Evrony G.D., Cai X., Elhosary P.C., Beroukhim R., Lehtinen M.K., Hills L.B., Heinzen E.L., Hill A., Hill R.S., Barry B.J., Bourgeois B.F., Riviello J.J., Barkovich A.J., Black P.M., Ligon K.L., Walsh C.A. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron. 2012;74(1):41–8. doi: 10.1016/j.neuron.2012.03.010.

45. Biesecker L.G., Spinner N.B. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14(5):307–20. doi: 10.103/nrg3424.

46. Bernhard S.M., Adam L., Atef H., Häberli D., Bramer W.M., Minder B., Döring Y., Laine J.E., Muka T., Rössler J., Baumgartner I. A systematic review of the safety and efficacy of currently used treatment modalities in the treatment of patients with PIK3CA-related overgrowth spectrum. J Vasc Surg Venous Lymphat Disord. 2022;10(2):527–38.e2. doi: 10.1016/j.jvsv.2021.07.008.

47. Cerrato F., Eberlin K.R., Waters P., Upton J., Taghinia A., Labow B.I. Presentation and treatment of macrodactyly in children. J Hand Surg Am. 2013;38(11):2112–23. doi: 10.1016/j.jhsa.2013.08.095.

48. Hardwicke J., Khan M.A., Richards H., Warner R.M., Lester R. Macrodactyly – options and outcomes. J Hand Surg Eur Vol. 2013;38(3):297–303. doi: 10.1177/1753193412451232.

49. Couto J.A., Maclellan R.A., Greene A.K. Management of Vascular Anomalies and Related Conditions Using Suction-Assisted Tissue Removal. Plast Reconstr Surg. 2015;136(4):511e–4. doi: 10.1097/PRS.0000000000001558.

50. Jacob A.G., Driscoll D.J., Shaughnessy W.J., Stanson A.W., Clay R.P., Gloviczki P. Klippel–Trénaunay syndrome: spectrum and managemet. Mayo Clin Proc. 1998;73(1):28–36. doi: 10.1016/S0025-6196(11)63615-X.

51. Adams D.M., Trenor C.C., Hammill A.M., Vinks A.A., Patel M.N., Chaudry G., Wentzel M.S., Mobberley-Schuman P.S., Campbell L.M., Brookbak C., Gupta A., Chute C., Eile J., McKenna J., Merrow A.C., Fei L., Hornung L., Seid M., Dasgupta A.R., Dickie B.H., Elluru R.G., Lucky A.W., Weiss B., Azizkhan R.G. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257. doi: 10.1542/peds.2015-3257.

52. Sandbank S., Molho-Pessach V., Farkas A., Barzilai A., Greenberger S. Oral and Topical Sirolimus for Vascular Anomalies: A Multicentre Study and Review. Acta Derm Venereol. 2019;99(11):990–6. doi: 10.2340/00015555-3262.

53. Venot Q., Blanc T., Rabia S.H., Berteloot L., Ladraa S., Duong J.P., Blanc E., Johnson S.C., Hoguin C., Boccara O., Sarnacki S., Boddaert N., Pannier S., Martinez F., Magassa S., Yamaguchi J., Knebelmann B., Merville P., Grenier N., Joly D., Cormier-Daire V., Michot C., Bole-Feysot C., Picard A., Soupre V., Lyonnet S., Sadoine J., Slimani L., Chaussain C., Laroche-Raynaud C., Guibaud L., Broissand C., Amiel J., Legendre C., Terzi F., Canaud G. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature. 2018;558(7711):540–6. doi: 10.1038/s41586-018-0217-9.


Review

For citations:


Sagoyan G.B., Kletskaya I.S., Imyanitov E.N., Mareeva Yu.M., Zhukov N.V., Khagurov R.A., Suleymanova A.M. A spectrum of overgrowth syndromes associated with the PIK3CA mutation. Literature review. Russian Journal of Pediatric Hematology and Oncology. 2022;9(1):29-44. (In Russ.) https://doi.org/10.21682/2311-1267-2022-9-1-29-44

Views: 2039


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-1267 (Print)
ISSN 2413-5496 (Online)
X