Comparison of scintigraphy with 123I-MIBG and 99mTc-tectrotyde in patients with tumors of a neurogenic nature
https://doi.org/10.21682/2311-1267-2024-11-1-36-43
Abstract
Introduction. Neuroblastoma (NB) is the most common extracranial solid tumor in children; it ranks third in the structure of childhood oncopathology, and in the structure of infant cancer up to 1 year of age, it ranks first. In children over 1 year of age, stages 3–4 are detected in more than 50 % of cases. In 60 % of cases, patients with stage 4 are diagnosed with bone marrow and/or bone involvement. This group of patients has one of the lowest survival rates in oncopediatrics. To carry out primary staging, assess the effectiveness of therapy, monitoring and for theranostic purposes, scintigraphy with 123I-MIBG is most often used. There are also studies demonstrating the diagnostic effectiveness of radionuclide studies of NB with somatostatin analogues, which include 99mTc-tectrotyde. Currently, two diagnostic radiopharmaceutical are registered in the Russian Federation: the “reference” 123I-MIBG, the most commonly used for diagnosing NB, and the potentially useful, but not used 99mTc-tectrotyde.
Purpose of the study – to determine the possibility of using 99mTc-tectrotyde as a diagnostic radiopharmaceutical for neurogenic tumors in children and compare the diagnostic capabilities of scintigraphy with 123I-MIBG and 99mTc-tectrotyde.
Materials and methods. The study included patients with a morphologically verified diagnosis before treatment: 7 patients diagnosed with NB and 1 with a diagnosis of paraganglioma. All patients underwent two consecutive scintigraphic studies: with 123I-MIBG and with 99mTc-tectrotyde with the minimum possible time interval between them (2–6 days), the sequence did not matter. A quantitative assessment of the accumulation levels of both radiopharmaceuticals was carried out using the SPECT/CT method.
Results. Compared with 123I-MIBG, 99mTc-tectrotyde scintigraphy allowed visualization of the primary tumor in 7 out of 8 patients, while all metastases were visible in only 1 out of 3 patients.
Conclusion. Our study was the first to compare 123I-MIBG and 99mTc-tectrotyde in the diagnosis of childhood neurogenic tumors before treatment. Scintigraphy with 99mTc-tectrotyde turned out to be applicable for the diagnosis of neurogenic tumors, however, a small sample of patients does not allow us to determine the diagnostic effectiveness and requires further study.
About the Authors
E. A. NikolaevaRussian Federation
Graduate Student, Radiologist Department of Radionuclide Diagnostics No. 1
23 Kashirskoe Shosse, Moscow, 115522
A. S. Krylov
Russian Federation
Cand. of Sci. (Med.), Associate Professor, Head of the Department of Radionuclide Diagnostics No. 1
AuthorID: 723683, ScopusID: 57192816516
23 Kashirskoe Shosse, Moscow, 115522
S. M. Kasprshyk
Russian Federation
Radiologist Department of Radionuclide Diagnostics No. 1
23 Kashirskoe Shosse, Moscow, 115522
M. O. Goncharov
Russian Federation
Radiologist Department of Radionuclide Diagnostics No. 1
23 Kashirskoe Shosse, Moscow, 115522
S. N. Prokhorov
Russian Federation
Radiologist Department of Radionuclide Diagnostics No. 1
23 Kashirskoe Shosse, Moscow, 115522
A. D. Ryzhkov
Russian Federation
Dr. of Sci. (Med.), Professor, Leading Researcher, Radiologist Department of Radionuclide Diagnostics No. 1
23 Kashirskoe Shosse, Moscow, 115522
Bldg. 1, 2/1 Barrikadnaya St., Moscow, 125993
A. I. Pronin
Russian Federation
Cand. of Sci. (Med.), Associate Professor, Head of the Department of Radionuclide Diagnostics and Therapy, Head of the Department of Radionuclide Diagnostics No. 2
23 Kashirskoe Shosse, Moscow, 115522
A. P. Kazantsev
Russian Federation
Dr. of Sci. (Med.), Head of the Surgical Department with Chemotherapy (Young Children) of the Research Institute of Pediatric Oncology and Hematology named after Academician of the Russian Academy of Medical Sciences L.A. Durnov
23 Kashirskoe Shosse, Moscow, 115522
S. R. Varfolomeeva
Russian Federation
Dr. of Sci. (Med.), Professor, Director of the Research Institute of Pediatric Oncology and Hematology named after Academician of the Russian Academy of Medical Sciences L.A. Durnov
23 Kashirskoe Shosse, Moscow, 115522
References
1. Wilson L.M., Draper G.J. Neuroblastoma, its natural history and prognosis: a study of 487 cases. Br Med J. 1974;3:301–7. doi: 10.1136/bmj.3.5926.301.
2. Punia R.S., Mundi I., Kundu R., Jindal G., Dalal U., Mohan H. Spectrum of nonhematological pediatric tumors: a clinicopathologic study of 385 cases. Indian J Med Paediatr Oncol. 2014;35(2):170–4. doi: 10.4103/0971-5851.138995.
3. Brodeur G.M., Castleberry R.P. Neuroblastoma. In: Principles and practices of pediatric oncology. Pizzo P.A., Poplack D.G., eds. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2006. Pp. 933–70.
4. Ren J., Fu Z., Zhao Y. Clinical value of 18F-FDG PET/CT to predict MYCN gene, chromosome 1p36 and 11q status in pediatric neuroblastoma and ganglioneuroblastoma. Front Oncol. 2023;13:1099290. doi: 10.3389/fonc.2023.1099290.
5. Sharp S.E., Shulkin B.L., Gelfand M.J., Salisbury S., Furman W.L. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43. doi: 10.2967/jnumed.108.060467.
6. Nakajo M., Shapiro B., Copp J., Kalff V., Gross M.D., Sisson J.C., Beierwaltes W.H. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med. 1983;24(8):672–82. PMID: 6135764.
7. Wang Y., Xu Y., Kan Y., Wang W., Yang J. Diagnostic Value of Seven Diff erent Imaging Modalities for Patients with Neuroblastic Tumors: A Network Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:5333366. doi: 10.1155/2021/5333366.
8. Zhang H., Huang R., Cheung N.K., Guo H., Zanzonico P.B., Thaler H.T., Lewis J.S., Blasberg R.G. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20(8):2182–91. doi: 10.1158/1078-0432.CCR-13-1153.
9. Dhull V.S., Sharma P., Patel C., Kundu P., Agarwala S., Bakhshi S., Bhatnagar V., Bal C., Kumar R. Diagnostic value of 18F-FDG PET/CT in paediatric neuroblastoma: comparison with 131I-MIBG scintigraphy. Nucl Med Commun. 2015;36(10):1007–13. doi: 10.1097/MNM.0000000000000347.
10. Beijst C., de Keizer B., Lam M.G.E.H., Janssens G.O., Tytgat G.A.M., de Jong H.W.A.M. A phantom study: Should 124I-mIBG PET/CT replace 123I-mIBG SPECT/CT? Med Phys. 2017;44(5):1624–31. doi: 10.1002/mp.12202.
11. Bar-Sever Z., Biassoni L., Shulkin B., Kong G., Hofman M.S., Lopci E., Manea I., Koziorowski J., Castellani R., Boubaker A., Lambert B., Pfl uger T., Nadel H., Sharp S., Giammarile F. Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging. 2018;45(11):2009–24. doi: 10.1007/s00259-018-4070-8.
12. Ambrosini V., Morigi J.J., Nanni C., Castellucci P., Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga] tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59(1):58–69. PMID: 25677589.
13. Sait S., Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther. 2017;17(10):889–904. doi: 10.1080/14737140.2017.1364995.
14. Chan G.C., Chan C.M. Anti-GD2 Directed Immunotherapy for High- Risk and Metastatic Neuroblastoma. Biomolecules. 2022;12(3):358. doi: 10.3390/biom12030358.
15. Kroiss A., Putzer D., Uprimny C., Decristoforo C., Gabriel M., Santner W., Kranewitter C., Warwitz B., Waitz D., Kendler D., Virgolini I.J. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38(5):865–73. doi: 10.1007/s00259-010-1720-x.
16. Del Olmo-Garcia M.I., Prado-Wohlwend S., Andres A., Soriano J.M., Bello P., Merino-Torres J.F. Somatostatin and Somatostatin Receptors: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Biomedicines. 2021;9(12):1810. doi: 10.3390/biomedicines9121810.
17. Bădan M.I., Piciu D. Immunohistochemical markers and SPECT/CT somatostatin-receptor (99mTc-tektrotyd) uptake in well and moderately diff erentiated neuroendocrine tumors. Acta Endocrinol (Buchar). 2022;18(4):523–30. doi: 10.4183/aeb.2022.523.
18. Clinical recommendations. Neuroblastoma. National Society of Pediatric Hematology and Oncology, 2020. (In Russ.)
19. Ben-Sellem D., Ben-Rejeb N. Does the Incremental Value of 123I-Metaiodobenzylguanidine SPECT/CT over Planar Imaging Justify the Increase in Radiation Exposure? Nucl Med Mol Imaging. 2021;55(4):173–80. doi: 10.1007/s13139-021-00707-5.
20. Bleeker G., Tytgat G.A., Adam J.A., Caron H.N., Kremer L.C., Hooft L., Dalen E.C. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
21. Kroiss A.S. Current status of functional imaging in neuroblastoma, pheochromocytoma, and paraganglioma disease. Wien Med Wochenschr. 2019;169:25–32. doi: 10.1007/s10354-018-0658-7.
22. Emami-Ardekani A., Mirzabeigi A., Fard-Esfahani A., Fallahi B., Beiki D., Hassanzadeh-Rad A., Geramifar P., Eftekhari M. Comparing diagnostic performance of 131I-metaiodobenzylguanidine (131I-MIBG) and 99mTc-hydrazinonicotinyl-Tyr3-Octreotide (99mTc-HYNIC-TOC) in diagnosis and localization of pheochromocytoma and neuroblastoma. Iran J Nucl Med. 2018;26(2):68–75.
23. Alexander N., Marrano P., Thorner P., Naranjo A., Van Ryn C., Martinez D., Batra V., Zhang L., Irwin M.S., Baruchel S. Prevalence and Clinical Correlations of Somatostatin Receptor-2 (SSTR2) Expression in Neuroblastoma. J Pediatr Hematol Oncol. 2019;41(3):222–7. doi: 10.1097/MPH.0000000000001326.
24. Zhou Z., Wang G., Qian L., Liu J., Yang X., Zhang S., Zhang M., Kan Y., Wang W., Yang J. Evaluation of iodine-123-labeled metaiodobenzylguanidine single-photon emission computed tomography/computed tomography based on the International Society of Pediatric Oncology Europe Neuroblastoma score in children with neuroblastoma. Quant Imaging Med Surg. 2023;13(6):3841–51. doi: 10.21037/qims-22-1120.
25. Limouris G.S., Giannakopoulos V., Stavraka A., Toubanakis N., Vlahos L. Comparison of In-111 pentetreotide, Tc-99m (V)DMSA and I-123 mlBG scintimaging in neural crest tumors. Anticancer Res. 1997;17(3B):1589–92. PMID: 9179199.
26. https://classic.clinicaltrials.gov/ct2/show/NCT04023331 [Электронный ресурс]. Дата обращения: 22.10.2023.
Review
For citations:
Nikolaeva E.A., Krylov A.S., Kasprshyk S.M., Goncharov M.O., Prokhorov S.N., Ryzhkov A.D., Pronin A.I., Kazantsev A.P., Varfolomeeva S.R. Comparison of scintigraphy with 123I-MIBG and 99mTc-tectrotyde in patients with tumors of a neurogenic nature. Russian Journal of Pediatric Hematology and Oncology. 2024;11(1):36-43. (In Russ.) https://doi.org/10.21682/2311-1267-2024-11-1-36-43